如圖,已知一次函數(shù)y=k1x+b的圖象與反比例函數(shù)y=的圖象交于A(1,-3),B(3,m)兩點(diǎn),連接OA、OB.

(1)求兩個(gè)函數(shù)的解析式;(2)求△AOB的面積.

(1)y=x-4,y=-;(2)4

解析試題分析:(1)先把A(1,-3)代入y=即可求得反比例函數(shù)的解析式,從而可以求得點(diǎn)B的坐標(biāo),最后把點(diǎn)A、B的坐標(biāo)代入一次函數(shù)的解析式求解即可;
(2)把△AOB放在一個(gè)邊長(zhǎng)為4的正方形中,再減去周圍小直角三角形的面積即可.
解:(1)把A(1,-3)代入y=可得,則反比例函數(shù)的解析式為y=-
因?yàn)閮蓚(gè)圖象交于點(diǎn)A(1,-3),B(3,m),所以m=-1,則點(diǎn)B坐標(biāo)為(3,-1)
所以,解得
所以一次函數(shù)的解析式為y=x-4;
(2)△AOB的面積
考點(diǎn):一次函數(shù)、反比例函數(shù)的性質(zhì)
點(diǎn)評(píng):函數(shù)的性質(zhì)是初中數(shù)學(xué)的重點(diǎn),是中考中比較常見的知識(shí)點(diǎn),一般難度不大,需熟練掌握.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=
ax
的圖象交于A(2,4)和精英家教網(wǎng)B(-4,m)兩點(diǎn).
(1)求這兩個(gè)函數(shù)的解析式;
(2)求△AOB的面積;
(3)根據(jù)圖象直接寫出,當(dāng)y1>y2時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=-
8x
的圖象交于A,B點(diǎn),且點(diǎn)A的橫坐標(biāo)和點(diǎn)B的縱坐標(biāo)都是-2.求:
(1)求A、B兩點(diǎn)坐標(biāo);
(2)求一次函數(shù)的解析式;
(3)根據(jù)圖象直接寫出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍.
(4)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•新疆)如圖,已知一次函數(shù)y1=kx+b與反比例函數(shù)y2=
mx
的圖象交于A(2,4)、B(-4,n)兩點(diǎn).
(1)分別求出y1和y2的解析式;
(2)寫出y1=y2時(shí),x的值;
(3)寫出y1>y2時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知一次函數(shù)y=k1x+b經(jīng)過(guò)A、B兩點(diǎn),將點(diǎn)A向上平移1個(gè)單位后剛好在反比例函數(shù)y=
k2x
上.
(1)求出一次函數(shù)解析式.
(2)求出反比例函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知一次函數(shù)y=kx+b的圖象交反比例函數(shù)y=
4-2m
x
的圖象交于點(diǎn)A、B,交x軸于點(diǎn)C.
(1)求m的取值范圍;
(2)若點(diǎn)A的坐標(biāo)是(2,-4),且
BC
AB
=
1
3
,求m的值和一次函數(shù)的解析式;
(3)根據(jù)圖象,寫出當(dāng)反比例函數(shù)的值小于一次函數(shù)的值時(shí)x 的取值范圍?

查看答案和解析>>

同步練習(xí)冊(cè)答案