(2013•新疆)如圖,已知一次函數(shù)y1=kx+b與反比例函數(shù)y2=
mx
的圖象交于A(2,4)、B(-4,n)兩點(diǎn).
(1)分別求出y1和y2的解析式;
(2)寫(xiě)出y1=y2時(shí),x的值;
(3)寫(xiě)出y1>y2時(shí),x的取值范圍.
分析:(1)將A坐標(biāo)代入反比例解析式中求出m的值,確定出反比例解析式,將B坐標(biāo)代入反比例解析式求出n的值,確定出B坐標(biāo),將A與B坐標(biāo)代入一次函數(shù)解析式求出k與b的值,即可確定出一次函數(shù)解析式;
(2)聯(lián)立兩函數(shù)解析式,求出方程組的解即可得到x的值;
(3)由兩函數(shù)交點(diǎn)坐標(biāo),利用圖形即可得出所求不等式的解集.
解答:解:(1)將A(2,4)代入反比例解析式得:m=8,
∴反比例函數(shù)解析式為y2=
8
x
,
將B(-4,n)代入反比例解析式得:n=-2,即B(-4,-2),
將A與B坐標(biāo)代入一次函數(shù)解析式得:
2k+b=4
-4k+b=-2
,
解得:
k=1
b=2

則一次函數(shù)解析式為y1=x+2;

(2)聯(lián)立兩函數(shù)解析式得:
y=x+2
y=
8
x

解得:
x=2
y=4
x=-4
y=-2
,
則y1=y2時(shí),x的值為2或-4;

(3)利用圖象得:y1>y2時(shí),x的取值范圍為-4<x<0或x>2.
點(diǎn)評(píng):此題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題,利用了待定系數(shù)法與數(shù)形結(jié)合的數(shù)學(xué)思想,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•新疆)如圖,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D為BC的中點(diǎn),若動(dòng)點(diǎn)E以1cm/s的速度從A點(diǎn)出發(fā),沿著A→B→A的方向運(yùn)動(dòng),設(shè)E點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒(0≤t<6),連接DE,當(dāng)△BDE是直角三角形時(shí),t的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•新疆)如圖,AB∥CD,BC∥DE,若∠B=50°,則∠D的度數(shù)是
130°
130°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•新疆)如圖,?ABCD中,點(diǎn)O是AC與BD的交點(diǎn),過(guò)點(diǎn)O的直線與BA、DC的延長(zhǎng)線分別交于點(diǎn)E、F.
(1)求證:△AOE≌△COF;
(2)請(qǐng)連接EC、AF,則EF與AC滿足什么條件時(shí),四邊形AECF是矩形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•新疆)如圖所示,一條自西向東的觀光大道l上有A、B兩個(gè)景點(diǎn),A、B相距2km,在A處測(cè)得另一景點(diǎn)C位于點(diǎn)A的北偏東60°方向,在B處測(cè)得景點(diǎn)C位于景點(diǎn)B的北偏東45°方向,求景點(diǎn)C到觀光大道l的距離.(結(jié)果精確到0.1km)

查看答案和解析>>

同步練習(xí)冊(cè)答案