如圖1,在等腰梯形ABCD中,AB∥DC,AD=BC=4cm,AB=12cm,CD=8cm點(diǎn)P從A開(kāi)始沿AB邊向B以3cm/s的速度移動(dòng),點(diǎn)Q從C開(kāi)始沿CD邊向D以1cm/s的速度移動(dòng),如果點(diǎn)P、Q分別從A、C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t(s).
(1)t為何值時(shí),四邊形APQD是平行四邊形?
(2)如圖2,如果⊙P和⊙Q的半徑都是2cm,那么,t為何值時(shí),⊙P和⊙Q外切?

解:(1)∵DQ∥AP,
∴當(dāng)AP=DQ時(shí),四邊形APQD是平行四邊形.此時(shí),3t=8-t.解得t=2(s).即當(dāng)t為2s時(shí),四邊形APQD是平行四邊形.

(2)∵⊙P和⊙Q的半徑都是2cm,
∴當(dāng)PQ=4cm時(shí),⊙P和⊙Q外切.而當(dāng)PQ=4cm時(shí),如果PQ∥AD,那么四邊形APQD是平行四邊形.
①當(dāng)四邊形APQD是平行四邊形時(shí),由(1)得t=2(s).
②當(dāng)四邊形APQD是等腰梯形時(shí),∠A=∠APQ.
∵在等腰梯形ABCD中,∠A=∠B,
∴∠APQ=∠B.
∴PQ∥BC.
∴四邊形PBCQ平行四邊形.此時(shí),CQ=PB.
∴t=12-3t.解得t=3(s).
綜上,當(dāng)t為2s或3s時(shí),⊙P和⊙Q相切.
分析:(1)表面問(wèn)四邊形APQD是平等四邊形,實(shí)質(zhì)為AP=DQ.容易得AP=3t,DQ=8-t,列方程3t=8-t即解;
(2)關(guān)鍵理解:什么情況下⊙P和⊙Q外切?⊙P和⊙Q外切就是PQ=AD根據(jù)題意有兩種可能:?APQD、等腰梯形APQD.?APQD就是AP=DQ等腰梯形APQD就是PB=CQ.分別列方程可解
點(diǎn)評(píng):此題考查平行四邊形性質(zhì)及等腰梯形性質(zhì)的理解及運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在等腰梯形ABCD中,AD∥BC,E是AB的中點(diǎn),過(guò)點(diǎn)E作EF∥BC交CD于點(diǎn)F.AB=4,BC=6,∠B=60度.
(1)求點(diǎn)E到BC的距離;
(2)點(diǎn)P為線(xiàn)段EF上的一個(gè)動(dòng)點(diǎn),過(guò)P作PM⊥EF交BC于點(diǎn)M,過(guò)M作MN∥AB交折線(xiàn)ADC于點(diǎn)N,連接PN,設(shè)EP=x.
①當(dāng)點(diǎn)N在線(xiàn)段AD上時(shí)(如圖2),△PMN的形狀是否發(fā)生改變?若不變,求出△PMN的周長(zhǎng);若改變,請(qǐng)說(shuō)明理由;
②當(dāng)點(diǎn)N在線(xiàn)段DC上時(shí)(如圖3),是否存在點(diǎn)P,使△PMN為等腰三角形?若存在,請(qǐng)求出所有滿(mǎn)足要求的x的值;若不存在,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在等腰梯形ABCD中,BC∥AD,BC=8,AD=20,AB=DC=10,點(diǎn)P從A點(diǎn)出發(fā)沿AD邊向點(diǎn)D移動(dòng),點(diǎn)Q自A點(diǎn)出發(fā)沿A→B→C的路線(xiàn)移動(dòng),且PQ∥DC,若AP=x,梯形位于線(xiàn)段PQ右側(cè)部分的面積為S.
(1)分別求出點(diǎn)Q位于AB、BC上時(shí),S與x之間函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)當(dāng)線(xiàn)段PQ將梯形ABCD分成面積相等的兩部分時(shí),x的值是多少?
(3)在(2)的條件下,設(shè)線(xiàn)段PQ與梯形ABCD的中位線(xiàn)EF交于O點(diǎn),那么OE與OF的長(zhǎng)度有什么關(guān)系?借助備用圖2說(shuō)明理由;并進(jìn)一步探究:對(duì)任何一個(gè)梯形,當(dāng)一直線(xiàn)l經(jīng)過(guò)梯形中位線(xiàn)的中點(diǎn)并滿(mǎn)足什么精英家教網(wǎng)條件時(shí),其一定平分梯形的面積?(只要求說(shuō)出條件,不需證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

基本模型
如下圖,點(diǎn)B、P、C在同一直線(xiàn)上,若∠B=∠1=∠C=90°,則△ABP∽△PCD成立,
(1)模型拓展
如圖1,點(diǎn)B、P、C在同一直線(xiàn)上,若∠B=∠1=∠C,則△ABP∽△PCD成立嗎?為什么?
(2)模型應(yīng)用
①如圖2,在等腰梯形ABCD中,AD∥BC,AD=1,AB=2,BC=4,在BC上截取BP=AD,作∠APQ=∠B,PQ交CD于點(diǎn)Q,求CQ的長(zhǎng);
②如圖3,正方形ABCD的邊長(zhǎng)為1,點(diǎn)P是線(xiàn)段BC上的動(dòng)點(diǎn),作∠APQ=90°,PQ交CD于Q,當(dāng)P在何處時(shí),線(xiàn)段CQ最長(zhǎng)?最長(zhǎng)是多少?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2009•黔南州)楊老師在上四邊形時(shí)給學(xué)生出了這樣一個(gè)題.如圖,若在等腰梯形ABCD中,M、N分別是AD、BC的中點(diǎn),E、F分別是BM、CM的中點(diǎn)時(shí).提出以下問(wèn)題:
(1)在不添加其它線(xiàn)段的前提下,圖中有哪幾對(duì)全等三角形?請(qǐng)直接寫(xiě)出結(jié)論;
(2)猜想四邊形MENF是何種的四邊形?并加以說(shuō)明;
(3)連接MN,當(dāng)MN與BC有怎樣的數(shù)量關(guān)系時(shí),四邊形MENF是正方形?(直接寫(xiě)出關(guān)系式,不需要說(shuō)明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,一條直線(xiàn)與反比例函數(shù)y=
kx
的圖象交于A(1,5),B(5,n)兩點(diǎn),與x軸交于D點(diǎn).

(1)如圖甲,①求反比例函數(shù)的解析式;②求n的值及D點(diǎn)坐標(biāo);
(2)連接AO、BO,求△ABO的面積;
(3)如圖乙,在等腰梯形OBCE中,BC∥OE,OD=CE,OE在Y軸上,過(guò)點(diǎn)C作CF⊥Y軸于點(diǎn)F,CF和反比例函數(shù)的圖象交于點(diǎn)P,當(dāng)梯形OBCE的面積為10時(shí),請(qǐng)判斷PC和PF的大小關(guān)系,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案