【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O與BC交于點D,過點D作⊙O的切線與AC交于點F.

(1)求證:EF=CF;

(2)若AE=8,cosA=,求DF的長.

【答案】(1)見解析;(2)2.

【解析】分析:(1)連接OD,DE先說明ODAC,由切線的性質得ODF=90°,從而DFC=90°,再證明DE=DC,根據(jù)三線合一結論可證;

(2)連接AD,BE,先說明DFBCE的中位線,從而DF=BE,在RtABE中,求出ABBE的長,進而可求出DF的長.

詳解:(1)證明:連接OD,DE,

AB=AC,

∴∠ABC=C,

OB=OD,

∴∠OBD=ODB,

∴∠ODB=C,

ODAC,

DF與⊙O相切,

ODDF,即∠ODF=90°,

∴∠DFC=90°,即DFAC,

∵∠ABC+AED=180°,AED+DEC=180°,

∴∠DEC=ABD=C,

DE=DC,

EF=FC;

(2)連接AD,BE,

AB是⊙O的直徑,

∴∠ADB=AEB=90°,

AB=AC,

BD=DC,

∴DF△BCE的中位線,

DF=BE,

RtABE中,

cosBAE=,

AB=

根據(jù)勾股定理可得:BE=,

DF=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】隨著“互聯(lián)網+”時代的到來,一種新型打車方式受到大眾歡迎,該打車方式的總費用由里程費和耗時費組成,其中里程費按x元/公里計算,耗時費按y元/分鐘計算(總費用不足9元按9元計價).小明、小剛兩人用該打車方式出行,按上述計價規(guī)則,其打車總費用、行駛里程數(shù)與打車時間如表:

時間(分鐘)

里程數(shù)(公里)

車費(元)

小明

8

8

12

小剛

12

10

16

(1)求x,y的值;

(2)如果小華也用該打車方式,打車行駛了11公里,用了14分鐘,那么小華的打車總費用為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD內找一點O,使它到四邊形四個頂點的距離之和OA+OB+OC+OD最小,正確的作法是連接AC、BD交于點O,則點O就是要找的點,請你用所學過的數(shù)學知識解釋這一道理__________________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是由一個角為60°且邊長為1的菱形組成的網格,每個菱形的頂點稱為格點,點A,B,C都在格點上,則tan∠BAC=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知線段AB,點C在直線AB上,D為線段BC的中點.

1)若AB8 ,AC2,求線段CD的長.

2)若點E是線段AC的中點,直接寫出線段DEAB的數(shù)量關系是________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某體育用品商場采購員要到廠家批發(fā)購買籃球和排球共個,籃球個數(shù)不少于排球個數(shù),付款總額不得超過元,已知兩種球廠的批發(fā)價和商場的零售價如下表. 設該商場采購個籃球.

品名

廠家批發(fā)價/元/個

商場零售價/元/個

籃球

排球

1)求該商場采購費用(單位:元)與(單位:個)的函數(shù)關系式,并寫出自變最的取值范圍:

2)該商場把這個球全都以零售價售出,求商場能獲得的最大利潤;

3)受原材料和工藝調整等因素影響,采購員實際采購時,低球的批發(fā)價上調了元/個,同時排球批發(fā)價下調了元/個.該體有用品商場決定不調整商場零售價,發(fā)現(xiàn)將個球全部賣出獲得的最低利潤是元,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:△ABC在直角坐標平面內,三個頂點的坐標分別為A(0,3)、B(3,4)、C(2,2)(正方形網格中每個小正方形的邊長是一個單位長度).

(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是   

(2)以點B為位似中心,在網格內畫出△A2B2C2,使△A2B2C2△ABC位似,且位似比為2:1,點C2的坐標是   ;

(3)△A2B2C2的面積是   平方單位.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,矩形OABC放置于平面直角坐標系中,點O與原點重合,點Ax軸正半軸上,點Cy軸正半軸上,點B的坐標為(6,3),點D是邊BC上的一動點,連接OD,作點C關于直線OD的對稱點C′.

(1)若點C、C′、A在一直線上時,求點D的坐標;

(2)若點C′到矩形兩對邊所在直線距離之比為1:2時,求點C′的坐標;

(3)若連接BC′,則線段BC′的長度范圍是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰直角三角形 AEF 的頂點 E 在等腰直角三角形 ABC 的邊 BC上.AB 的延長線交 EF D 點,其中∠AEF=∠ABC90°.

(1)求證:

(2)E BC 的中點,求的值.

查看答案和解析>>

同步練習冊答案