【題目】如圖,在□ABCD中,E是AD上一點,連接BE,F為BE中點,且AF=BF,
(1)求證:四邊形ABCD為矩形;
(2)過點F作FG⊥BE,垂足為F,交BC于點G,若BE=BC,S△BFG=5,CD=4,求CG.
【答案】(1)證明見解析;(2)-5.
【解析】試題分析:(1)求出∠BAE=90°,根據(jù)矩形的判定推出即可;
(2)求出△BGE面積,根據(jù)三角形面積公式求出BG,得出EG長度,根據(jù)勾股定理求出GH,求出BE,得出BC長度,即可求出答案.
試題解析:(1)證明:∵F為BE中點,AF=BF,
∴AF=BF=EF,
∴∠BAF=∠ABF,∠FAE=∠AEF,
在△ABE中,∠BAF+∠ABF+∠FAE+∠AEF=180°,
∴∠BAF+∠FAE=90°,
又四邊形ABCD為平行四邊形,
∴四邊形ABCD為矩形;
(2)解:連接EG,過點E作EH⊥BC,垂足為H,
∵F為BE的中點,FG⊥BE,
∴BG=GE,
∵S△BFG=5,CD=4,
∴S△BGE=10=BGEH,
∴BG=GE=5,
在Rt△EGH中,GH=
在Rt△BEH中,BE==BC,
∴CG=BC-BG=-5.
科目:初中數(shù)學 來源: 題型:
【題目】在端午佳節(jié)到來之前,兒童福利院對全體小朋友愛吃哪幾種粽子作調(diào)查,以決定最終買哪種粽子,下面的調(diào)查數(shù)據(jù)中最值得關(guān)注的是( )
A. 平均數(shù)B. 中位數(shù)C. 眾數(shù)D. 方差
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為菱形,點E為對角線AC上的一個動點,連結(jié)DE并延長交AB于點F,連結(jié)BE.
(1)如果①,求證:∠AFD=∠EBC;
(2)如圖②,若DE=EC且BE⊥AF,求∠DAB的度數(shù);
(3)若∠DAB=90°且當△BEF為等腰三角形時,求∠EFB的度數(shù)(只寫出條件與對應(yīng)的結(jié)果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C是⊙O上一點,∠BAC的平分線AD交⊙O于點D,過點D垂直于AC的直線交AC的延長線于點E.
(1)求證:DE是⊙O的切線;
(2)如果AD=5,AE=4,求AC長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】面試時,某人的基本知識、表達能力、工作態(tài)度的得分分別是90分,80分,85分,若依次按30%,30%,40%的比例確定成績,則這個人的面試成績是( )分
A. 75B. 80C. 82D. 85
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com