【題目】如圖,四邊形ABCD與四邊形OEFG都是正方形,O是正方形ABCD的中心,OE交BC于點(diǎn)M,OG交CD于點(diǎn)N,下列結(jié)論:①△ODG≌△OCE;②GD=CE;③OG⊥CE;④若正方形ABCD的邊長(zhǎng)為2,則四邊形OMCN的面積等于1,其中正確的結(jié)論有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
【答案】C
【解析】
根據(jù)O是正方形ABCD的中心以及四邊形OEFG是正方形,利用SAS可證明△DOG≌△COE,根據(jù)全等三角形的性質(zhì)可得DG=CE,由此可判定①②正確,由正方形OEFG可得OE⊥OG,從而可得OG不垂直CE,判定③錯(cuò)誤,證明△DON≌△COM,從而可得S△DON=S△COM,繼而根據(jù)正方形面積公式可求得S四邊形OMCN=S△COD=1,判定④正確,據(jù)此即可得答案.
∵O是正方形ABCD的中心,
∴OD=OC,AC⊥BD,∠ODN=∠OCM=45°,
∴∠DOC=90°,
∵四邊形OEFG是正方形,
∴OG=OE,∠EOG=90°,
∴∠DOG=∠COE,
在△DOG和△COE中,
,
∴△DOG≌△COE,
∴DG=CE,所以①②正確,
∵∠EOG=90°,
∴OE⊥OG,
過點(diǎn)E有且只有一條直線和OG垂直,
∴OG不垂直CE,所以③錯(cuò)誤;
在△DON和△COM中,
,
∴△DON≌△COM,
∴S△DON=S△COM,
∴S四邊形OMCN=S△COD,
∵正方形ABCD的邊長(zhǎng)為2,
∴S△COD=S正方形ABCD=1,
∴S四邊形OMCN=S△COD=1,所以④正確,
即:正確的有①②④,
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)盒子里有完全相同的三個(gè)小球,球上分別標(biāo)上數(shù)字-1、1、2.隨機(jī)摸出一個(gè)小球(不放回),其數(shù)字記為p,再隨機(jī)摸出另一個(gè)小球,其數(shù)字記為q,則p,q使關(guān)于x的方程x2+px+q=0有實(shí)數(shù)根的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不動(dòng),△ADE繞點(diǎn)A旋轉(zhuǎn),連接BE,CD,F(xiàn)為BE的中點(diǎn),連接AF.
(1)如圖①,當(dāng)∠BAE=90°時(shí),求證:CD=2AF;
(2)當(dāng)∠BAE≠90°時(shí),(1)的結(jié)論是否成立?請(qǐng)結(jié)合圖②說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2臺(tái)大收割機(jī)和5臺(tái)小收割機(jī)同時(shí)工作2 h共收割小麥3.6hm2,3臺(tái)大收割機(jī)和2臺(tái)小收割機(jī)同時(shí)工作5 h共收割小麥8 hm2.1臺(tái)大收割機(jī)和1臺(tái)小收割機(jī)每小時(shí)各收割小麥多少公頃?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】大家知道烏鴉喝水的故事,如圖,它看到一個(gè)水位較低的瓶子,喝不著水,沉思一會(huì)后聰明的烏鴉銜來一個(gè)個(gè)小石子放入瓶中,水位上升后,烏鴉喝到了水.從烏鴉看到瓶子的那刻起開始計(jì)時(shí),設(shè)時(shí)間變量為,水位高度變量為,下列圖象中最符合故事情景的大致圖象是( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】∠A=65,∠B=75,將紙片一角折疊,使點(diǎn)C落在△ABC外,若∠2=20,則∠1的度數(shù)為 _______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,直線AB∥DC,點(diǎn)P為平面上一點(diǎn),連接AP與CP.
(1)如圖1,點(diǎn)P在直線AB、CD之間,當(dāng)∠BAP=60°,∠DCP=20°時(shí),求∠APC.
(2)如圖2,點(diǎn)P在直線AB、CD之間,∠BAP與∠DCP的角平分線相交于點(diǎn)K,寫出∠AKC與∠APC之間的數(shù)量關(guān)系,并說明理由.
(3)如圖3,點(diǎn)P落在CD外,∠BAP與∠DCP的角平分線相交于點(diǎn)K,∠AKC與∠APC有何數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將直角三角形ABC沿斜邊BC所在直線向右平移一定的長(zhǎng)度得到三角形DEF,DE交AC于G,連接AE和AD.有下列結(jié)論:①AC∥DF;②AD∥BE,AD=BE;③∠B=∠DEF;④ED⊥AC.其中正確的結(jié)論有( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點(diǎn)D是AB的中點(diǎn),以CD為直徑作⊙O,⊙O分別與AC,BC交于點(diǎn)E,F(xiàn),過點(diǎn)F作⊙O的切線FG,交AB于點(diǎn)G,則FG的長(zhǎng)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com