【題目】佳潤(rùn)商場(chǎng)銷售,兩種品牌的教學(xué)設(shè)備,這兩種教學(xué)設(shè)備的進(jìn)價(jià)和售價(jià)如表所示:
進(jìn)價(jià)(萬(wàn)元/套) | 1.5 | 1.2 |
售價(jià)(萬(wàn)元/套) | 1.65 | 1.4 |
該商場(chǎng)計(jì)劃購(gòu)進(jìn)兩種教學(xué)設(shè)備若干套,共需66萬(wàn)元,全部銷售后可獲 毛利潤(rùn)9萬(wàn)元.
(1)該商場(chǎng)計(jì)劃購(gòu)進(jìn),兩種品牌的教學(xué)設(shè)備各多少套?
(2)通過(guò)市場(chǎng)調(diào)研,該商場(chǎng)決定在原計(jì)劃的基礎(chǔ)上,減少種設(shè)備的購(gòu)進(jìn)數(shù)量,增加種設(shè)備的購(gòu)進(jìn)數(shù)量,已知種設(shè)備增加的數(shù)量 是種設(shè)備減少的數(shù)量的1.5倍.若用于購(gòu)進(jìn)這兩種教學(xué)設(shè)備的 總資金不超過(guò)69萬(wàn)元,問(wèn)種設(shè)備購(gòu)進(jìn)數(shù)量至多減少多少套?
(3)在(2)的條件下,該商場(chǎng)所能獲得的最大利潤(rùn)是多少萬(wàn)元?
【答案】(1)A種品牌的教學(xué)設(shè)備20套, B種品牌的教學(xué)設(shè)備30套;(2)10;(3)10.5萬(wàn)元
【解析】
(1)設(shè)該商場(chǎng)計(jì)劃購(gòu)進(jìn)種品牌的教學(xué)設(shè)備套,購(gòu)進(jìn)種品牌的教學(xué)設(shè)備套,根據(jù)購(gòu)買兩種設(shè)備共需66萬(wàn)元且全部銷售后可獲毛利潤(rùn)9萬(wàn)元,即可得出關(guān)于、的二元一次方程組,解之即可得出結(jié)論;
(2)設(shè)減少種設(shè)備套,則增加種設(shè)備套,根據(jù)總價(jià)單價(jià)購(gòu)進(jìn)數(shù)量結(jié)合購(gòu)進(jìn)兩種設(shè)備的總資金不超過(guò)69萬(wàn)元,即可得出關(guān)于的一元一次不等式,解之即可得出的取值范圍,取其內(nèi)的最大整數(shù)即可;
(3)設(shè)該商場(chǎng)獲得的利潤(rùn)為萬(wàn)元,根據(jù)總利潤(rùn)單套利潤(rùn)購(gòu)進(jìn)數(shù)量,即可得出關(guān)于的函數(shù)關(guān)系式,根據(jù)一次函數(shù)的性質(zhì)結(jié)合的取值范圍即可解決最值問(wèn)題.
解:(1)設(shè)該商場(chǎng)計(jì)劃購(gòu)進(jìn)種品牌的教學(xué)設(shè)備套,購(gòu)進(jìn)種品牌的教學(xué)設(shè)備套,
根據(jù)題意得:,
解得:.
答:該商場(chǎng)計(jì)劃購(gòu)進(jìn)種品牌的教學(xué)設(shè)備20套,購(gòu)進(jìn)種品牌的教學(xué)設(shè)備30套.
(2)設(shè)減少種設(shè)備套,則增加種設(shè)備套,
根據(jù)題意得:,
解得:.
答:種設(shè)備購(gòu)進(jìn)數(shù)量至多減少10套.
(3)設(shè)該商場(chǎng)獲得的利潤(rùn)為萬(wàn)元,
根據(jù)題意得:.
,
值隨值的增大而增大,
當(dāng)時(shí),取最大值,最大值為10.5.
答:在(2)的條件下,該商場(chǎng)所能獲得的最大利潤(rùn)是10.5萬(wàn)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解全校1600名學(xué)生每周課外體育活動(dòng)時(shí)間的情況,隨機(jī)調(diào)查了其中的部分學(xué)生,對(duì)這些學(xué)生每周課外體育活動(dòng)時(shí)間(單位:小時(shí))進(jìn)行了統(tǒng)計(jì),根據(jù)所得數(shù)據(jù)繪制了一副統(tǒng)計(jì)圖,根據(jù)以上信息及統(tǒng)計(jì)圖解答下列問(wèn)題:
(1)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為_(kāi)_____.
(2)求這些學(xué)生每周課外體育活動(dòng)時(shí)間的平均數(shù).
(3)估計(jì)全校學(xué)生每周課外體育活動(dòng)時(shí)間不多于4小時(shí)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)y=﹣x2+bx+c(b,c為常數(shù))的圖象經(jīng)過(guò)點(diǎn)A(3,1),點(diǎn)C(0,4),頂點(diǎn)為點(diǎn)M,過(guò)點(diǎn)A作AB∥x軸,交y軸于點(diǎn)D,交該二次函數(shù)圖象于點(diǎn)B,連結(jié)BC.
(1)求該二次函數(shù)的解析式及點(diǎn)M的坐標(biāo);
(2)若將該二次函數(shù)圖象向下平移m(m>0)個(gè)單位,使平移后得到的二次函數(shù)圖象的頂點(diǎn)落在△ABC的內(nèi)部(不包括△ABC的邊界),求m的取值范圍;
(3)點(diǎn)P是直線AC上的動(dòng)點(diǎn),若點(diǎn)P,點(diǎn)C,點(diǎn)M所構(gòu)成的三角形與△BCD相似,請(qǐng)直接寫出所有點(diǎn)P的坐標(biāo)(直接寫出結(jié)果,不必寫解答過(guò)程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是⊙的直徑,點(diǎn)在⊙上.
(1)如圖①,點(diǎn)在⊙上,且,若20°,求的大小;
(2)如圖②,過(guò)點(diǎn)作⊙的切線,交的延長(zhǎng)線于點(diǎn),若⊙的直徑為,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系內(nèi),小正方形網(wǎng)格的邊長(zhǎng)為1個(gè)單位長(zhǎng)度,的三個(gè)頂點(diǎn)的坐標(biāo)分別為,,.
(1)將向上平移1個(gè)單位長(zhǎng)度,再向右平移5個(gè)單位長(zhǎng)度后得到的;直接寫出的坐標(biāo);
(2)將繞原點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)得到直接寫出的坐標(biāo);
(3)在軸上存在一點(diǎn),滿足點(diǎn)到與點(diǎn)距離之和最小,請(qǐng)直接寫出點(diǎn)的坐標(biāo)(學(xué)生可以在練習(xí)本上畫圖,答題卡上直接寫出答案即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=(x>0)的圖象交于A(2,﹣1)、B(,n)兩點(diǎn).直線y=2與y軸交于點(diǎn)C.
1)求一次函數(shù)與反比例函數(shù)的解析式;
2)求△ABC的面積;
3)直接寫出不等式kx+b>在如圖所示范圍內(nèi)的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形中,對(duì)角線與相交于點(diǎn),過(guò)點(diǎn)作,過(guò)點(diǎn)作,兩線相交于點(diǎn);
(1)求證:;
(2)連接,交于點(diǎn),若于點(diǎn),求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的解析式為,是拋物線上的一個(gè)動(dòng)點(diǎn),是拋物線對(duì)稱軸上的一點(diǎn).
(1)求拋物線的頂點(diǎn)及與軸交點(diǎn)的坐標(biāo);
(2)是過(guò)點(diǎn)且平行于軸的直線,與拋物線的對(duì)稱軸的交點(diǎn)為,,垂足為點(diǎn),連接,.
①當(dāng)是等邊三角形時(shí),求點(diǎn)的坐標(biāo);
②求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以點(diǎn)O為圓心,OE為半徑作優(yōu)弧EF,連接OE,OF,且OE=3,∠EOF=120°,在弧EF上任意取點(diǎn)A,B(點(diǎn)B在點(diǎn)A的順時(shí)針?lè)较颍┣沂?/span>AB=2,以AB為邊向弧內(nèi)作正三角形ABC.
(1)發(fā)現(xiàn):不論點(diǎn)A在弧上什么位置,點(diǎn)C與點(diǎn)O的距離不變,點(diǎn)C與點(diǎn)O的距離是 ;點(diǎn)C到直線EF的最大距離是 .
(2)思考:當(dāng)點(diǎn)B在直線OE上時(shí),求點(diǎn)C到OE的距離,在備用圖1中畫出示意圖,并寫出計(jì)算過(guò)程.
(3)探究:當(dāng)BC與OE垂直或平行時(shí),直接寫出點(diǎn)C到OE的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com