如圖,點(diǎn)D在△ABC邊BC的延長線上,DE⊥AB于E,交AC于F,∠B=50°,∠CFD=60°,則∠ACB=
100°
100°
分析:根據(jù)對(duì)頂角的定義、直角三角形的性質(zhì)可以求得∠A=30°.然后由△ABC的內(nèi)角和定理可以求得∠ACB=100°.
解答:解:如圖,∵DE⊥AB,∠CFD=60°,
∴∠AEF=90°,∠AFE=60°,
∴∠A=90°-∠AFE=30°,
∴∠ACB=180°-∠B-∠A=100°
故答案是:100°.
點(diǎn)評(píng):本題考查了三角形內(nèi)角和定理和直角三角形的性質(zhì).由垂直得到直角、三角形內(nèi)角和是180度是隱含在題中的已知條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

25、如圖,點(diǎn)E在△ABC外部,點(diǎn)D在邊BC上,DE交AC于F.若∠1=∠2=∠3,AC=AE,請(qǐng)說明△ABC≌△ADE的道理.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)D在△ABC的邊BC上,且與B,C不重合,過點(diǎn)D作AC的平行線DE交AB于E,作AB的平行線DF交精英家教網(wǎng)AC于點(diǎn)F.又知BC=5.
(1)設(shè)△ABC的面積為S.若四邊形AEFD的面積為
2
5
S
;求BD長.
(2)若AC=
2
AB
;且DF經(jīng)過△ABC的重心G,求E,F(xiàn)兩點(diǎn)的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、已知:如圖,點(diǎn)D在△ABC的邊BC上,DE∥AC交AB于E,DF∥AB交AC于F.
(1)求證:△AED≌△DFA;
(2)若AD平分∠BAC.求證:四邊形AEDF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)D在△ABC邊BC上,且∠ADC=∠BAC,若AC=x,CD=x-2,BD=2x-2,則x的值是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)D在△ABC的邊BC上,DC=AC=BD,∠ACB的平分線CF交AD于F,點(diǎn)E是AB的中點(diǎn),連接EF.
(1)求證:△AEF∽△ABD.
(2)若△AEF的面積為1,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案