【題目】已知:如圖,等邊△ABC的邊長為8,DAC上的一個動點,延長AB到點E,使BE=CD,連接DEBC于點P

1)求證:DP=EP;

2)若DAC的中點,求BP的長.

【答案】1)見解析;(2BP=2

【解析】

1)過點DDFAB,交BC于點F,根據(jù)平行線的性質(zhì)及等邊三角形的性質(zhì)證明BE=CD=DF,根據(jù)平行線的性質(zhì)證得∠PEB=PDF

2)根據(jù)點DAC的中點得到CD,即可求出BF,利用△BPE≌△FPD得到BP=FP,即可求出答案.

(1)證明:過點DDFAB,交BC于點F

DFAB

∴∠CFD=∠ABC,

∵△ABC為等邊三角形,

∴∠CFD=∠ABC=∠C=60°,

∴△CDF是等邊三角形,

DF=CD,

BE=CD,

BE=FD

DFAB,

∴∠PEB=∠PDF,

在△BPE和△FPD

∴△BPE≌△FPD,

DP=EP

(2)∵等邊△ABC的邊長為8,

AC=BC=8

∵點DAC的中點,

CF=CD=4,

BF=4

△BPE≌△FPD,

BP=FP,

BP=2.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】麗水苛公司將麗水山耕農(nóng)副產(chǎn)品運往杭州市場進行銷售.記汽車行駛時間為t小時,平均速度為v千米/小時(汽車行駛速度不超過100千米/小時).根據(jù)經(jīng)驗,v,t的一組對應(yīng)值如下表:

v(千米/小時)

75

80

85

90

95

t(小時)

4.00

3.75

3.53

3.33

3.16

(1)根據(jù)表中的數(shù)據(jù),求出平均速度v(千米/小時)關(guān)于行駛時間t(小時)的函數(shù)表達式;

(2)汽車上午7:30從麗水出發(fā),能否在上午10:00之前到達杭州市?請說明理由:

(3)若汽車到達杭州市場的行駛時間t滿足3.5≤t≤4,求平均速度v的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是半圓的直徑,點C是弧BD的中點,∠BAD=70°,則∠ADC等于(  )

A. 50° B. 55° C. 65° D. 70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AE⊥BDE,CF⊥BDF,AB=CD,AE=CF,則圖中全等三角形共有( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC的頂點A0,1),B3,2),C1,4)均在正方形網(wǎng)格的格點上.

1)畫出△ABC關(guān)于x軸的對稱圖形△A1B1C1

2)將△A1B1C1沿x軸方向向左平移4個單位得到△A2B2C2,畫出△A2B2C2并寫出頂點A2,B2,C2的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以△ABC的一邊BC為直徑作⊙O,交ABD,EAC的中點,DE⊙O于點D.

(1)請判斷AC⊙O的位置關(guān)系,并說明理由.

(2)若半徑為5,BD8,求線段AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P是∠AOB內(nèi)任意一點,∠AOB30°,OP8,點M和點N分別是射線OA和射線OB上的動點,則△PMN周長的最小值為( 。

A. 5B. 6C. 8D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=2x2+m的圖像經(jīng)過點(0,-4),正方形ABCD的頂點CDx軸上,點A,B恰好在二次函數(shù)的圖像上,則圖中陰影部分的面積之和為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】溫州市處于東南沿海,夏季經(jīng)常遭受臺風襲擊.一次,溫州氣象局測得臺風中心在溫州市A的正西方向300千米的B處(如圖),以每小時10千米的速度向東偏南30°的BC方向移動,并檢測到臺風中心在移動過程中,溫州市A將受到影響,且距臺風中心200千米的范圍是受臺風嚴重影響的區(qū)域.則影響溫州市A的時間會持續(xù)多長?(  )

A. 5 B. 6 C. 8 D. 10

查看答案和解析>>

同步練習冊答案