【題目】射線QN與等邊ABC的兩邊AB,BC分別交于點(diǎn)MN,且ACQN,AM=MB=2cmQM=4cm.動點(diǎn)P從點(diǎn)Q出發(fā),沿射線QN以每秒1cm的速度向右移動,經(jīng)過t秒,以點(diǎn)P為圓心,cm為半徑的圓與ABC的邊相切(切點(diǎn)在邊上),請寫出t可取的一切值 (單位:秒)

【答案】t=23≤t≤7t=8

【解析】∵△ABC是等邊三角形,AB=AC=BC=AM+MB=4cm,A=C=B=60°。

QNAC,AM=BMNBC中點(diǎn)。

MN=AC=2cm,BMN=BNM=C=A=60°。

分為三種情況:如圖1,當(dāng)PABM′時(shí),連接PM′,

PM′=cm,PM′M=90°,

∵∠PMM′=BMN=60°,M′M=1cmPM=2MM′=2cm,

QP=4cm2cm=2cm,

速度是每秒1cm,t=2。

如圖2,當(dāng)PAC切于A點(diǎn)時(shí),連接PA,

CAP=APM=90°,PMA=BMN=60°,AP=cm

PM=1cm,QP=4cm1cm=3cm。

速度是每秒1cm,t=3

當(dāng)PAC切于C點(diǎn)時(shí),連接PC,

CP′N=ACP′=90°,P′NC=BNM=60°CP′=cm,

P′N=1cm,QP=4cm+2cm+1cm=7cm。

速度是每秒1cm,t=7。

當(dāng)3≤t≤7時(shí),PAC邊相切。

如圖3,當(dāng)PBCN′時(shí),連接PN′,

PN′=cm,PM\N′N=90°,

∵∠PNN′=BNM=60°,N′N=1cmPN=2NN′=2cm

QP=4cm+2cm+2cm=8cm。

速度是每秒1cmt=8

綜上所述,t可取的一切值為:t=23≤t≤7t=8。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每個(gè)小方格都是邊長為1個(gè)單位長度的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,

(1)寫出A、B、C的坐標(biāo).

(2)以原點(diǎn)O為中心,將△ABC圍繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)180°得到△A1B1C1,畫出△A1B1C1

(3)求(2)中C到C1經(jīng)過的路徑以及OB掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC中,∠B50°,∠C70°,ADABC的角平分線,DEABE點(diǎn).

1)求∠EDA的度數(shù);

2AB10AC8,DE3,求SABC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】建立模型:如圖1,已知ABC,AC=BC,C=90°,頂點(diǎn)C在直線l上.

實(shí)踐操作:過點(diǎn)AADl于點(diǎn)D,過點(diǎn)BBEl于點(diǎn)E,求證:CADBCE

模型應(yīng)用:(1)如圖2,在直角坐標(biāo)系中,直線l1y=x+4y軸交于點(diǎn)A,與x軸交于點(diǎn)B,將直線l1繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)45°得到l2.求l2的函數(shù)表達(dá)式.

(2)如圖3,在直角坐標(biāo)系中,點(diǎn)B(8,6),作BAy軸于點(diǎn)A,作BCx軸于點(diǎn)CP是線段BC上的一個(gè)動點(diǎn),點(diǎn)Qa2a﹣6)位于第一象限內(nèi).問點(diǎn)AP、Q能否構(gòu)成以點(diǎn)Q為直角頂點(diǎn)的等腰直角三角形,若能,請求出此時(shí)a的值,若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E、F在對角線BD上,且BFDE

求證:四邊形AECF是菱形.

AB2,BF1,求四邊形AECF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O△ABC的外接圓,AB為直徑,∠BAC的平行線交⊙O與點(diǎn)D,過點(diǎn)D的切線分別交AB、AC的延長線與點(diǎn)EF

1)求證:AF⊥EF

2)小強(qiáng)同學(xué)通過探究發(fā)現(xiàn):AF+CF=AB,請你幫忙小強(qiáng)同學(xué)證明這一結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ABC中,∠ACB=90°,∠A=30°,點(diǎn)DAB的中點(diǎn),DE⊥BC,垂足為點(diǎn)E,連接CD

1)如圖1,DEBC的數(shù)量關(guān)系是   ;

2)如圖2,若P是線段CB上一動點(diǎn)(點(diǎn)P不與點(diǎn)B、C重合),連接DP,將線段DP繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)60°,得到線段DF,連接BF,請猜想DE、BF、BP三者之間的數(shù)量關(guān)系,并證明你的結(jié)論;

3)若點(diǎn)P是線段CB延長線上一動點(diǎn),按照(2)中的作法,請?jiān)趫D3中補(bǔ)全圖形,并直接寫出DE、BF、BP三者之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某段限速公路BC上(公路視為直線),交通管理部門規(guī)定汽車的最高行駛速度不能超過60 km/h,并在離該公路100 m處設(shè)置了一個(gè)監(jiān)測點(diǎn)A.在如圖的平面直角坐標(biāo)系中,點(diǎn)A位于y軸上,測速路段BC在x軸上,點(diǎn)B在點(diǎn)A的北偏西60°方向上,點(diǎn)C在點(diǎn)A的北偏東45°方向上.另外一條公路在y軸上,AO為其中的一段.

(1)求點(diǎn)B和點(diǎn)C的坐標(biāo);

(2)一輛汽車從點(diǎn)B勻速行駛到點(diǎn)C所用的時(shí)間是15 s,通過計(jì)算,判斷該汽車在這段限速路上是否超速.(參考數(shù)據(jù): ≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了解學(xué)生上學(xué)的交通方式,現(xiàn)從全校學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行我上學(xué)的交通方式問卷調(diào)查,規(guī)定每人必須并且只能在乘車、步行、騎車其他四項(xiàng)中選擇一項(xiàng),并根據(jù)統(tǒng)計(jì)結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.

請解答下列問題:

1)在這次調(diào)查中,樣本容量為  ;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3乘車所對應(yīng)的扇形圓心角為 °;

4)若該學(xué)校共有2000名學(xué)生,試估計(jì)該學(xué)校學(xué)生中選擇步行方式的人數(shù).

查看答案和解析>>

同步練習(xí)冊答案