【題目】如圖,在⊙O中,AB是的直徑,PA與⊙O 相切于點(diǎn)A,點(diǎn)C在⊙O 上,且PC=PA,
(1)求證PC是⊙O的切線;
(2)過(guò)點(diǎn)C作CD⊥AB于點(diǎn)E,交⊙O于點(diǎn)D,若CD=PA=2,
①求圖中陰影部分面積;
②連接AC,若△PAC的內(nèi)切圓圓心為I,則線段IE的長(zhǎng)為 .
【答案】(1)詳見(jiàn)解析;(2)①S陰影=. ②.
【解析】
(1)連接OCOP,證明△PCO≌△PAO,即可解答
(2)①作CM⊥AP于點(diǎn)M,得到△PCA是等邊三角形.然后在Rt△COE中得到OC=2.即可解答 .
②根據(jù)題意求出CH=AH=3,由I為正△PAC的內(nèi)心,即可求出解答 .
(1)證明:連接OCOP,
∵點(diǎn)C在⊙O上,
∴OC為半徑.
∵PA與⊙O相切于點(diǎn)A,
∴OA⊥PA.
∴∠PAO=90°.
∵OC=OA,
OP=OP,
PC=PA,
∴△PCO≌△PAO.
∴∠PCO=∠PAO=90°.
∴PC⊥OC.
∴PC是⊙O的切線.
(2)①作CM⊥AP于點(diǎn)M,
∵CD⊥AB,
∴CE=DE= ,∠CEA=90°.
∴四邊形CMAE是矩形.
∴AM=.
∴PM=AM.
∴PC=AC.
∵PC=PA,
∴△PCA是等邊三角形.
∴∠PAC=60°.
∴∠CAB=30°.
∴∠COE=60°.
∴∠COD=120°.
在Rt△COE中,
sin60°= ,
∴OC=2.
∴S陰影=π-.
②∵AP=2 ,AH=CE=
∴CH=AH=3
又∵I為正△PAC的內(nèi)心
∴CI= CH=2
∴IE= = =
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1是小明制作的一副弓箭,點(diǎn)A,D分別是弓臂BAC與弓弦BC的中點(diǎn),弓弦BC=60cm.沿AD方向拉動(dòng)弓弦的過(guò)程中,假設(shè)弓臂BAC始終保持圓弧形,弓弦不伸長(zhǎng).如圖2,當(dāng)弓箭從自然狀態(tài)的點(diǎn)D拉到點(diǎn)D1時(shí),有AD1=30cm,∠B1D1C1=120°.
(1)圖2中,弓臂兩端B1,C1的距離為______cm.
(2)如圖3,將弓箭繼續(xù)拉到點(diǎn)D2,使弓臂B2AC2為半圓,則D1D2的長(zhǎng)為____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為,對(duì)角線AC和BD交于點(diǎn)E,點(diǎn)F是BC邊上一動(dòng)點(diǎn)(不與點(diǎn)B,C重合),過(guò)點(diǎn)E作EF的垂線交CD于點(diǎn)G,連接FG交EC于點(diǎn)H.設(shè)BF=x,CH=y,則y與x的函數(shù)關(guān)系的圖象大致是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了慶祝“五四”青年節(jié),我市某中學(xué)舉行了書法比賽,賽后隨機(jī)抽查部分參賽同學(xué)成績(jī)(滿分為100分),并制作成圖表如下
分?jǐn)?shù)段 | 頻數(shù) | 頻率 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | m | 0.45 |
80≤x<90 | 60 | n |
90≤x≤100 | 20 | 0.1 |
請(qǐng)根據(jù)以上圖表提供的信息,解答下列問(wèn)題:
(1)這次隨機(jī)抽查了 名學(xué)生;表中的數(shù)m= ,n= ;
(2)請(qǐng)?jiān)趫D中補(bǔ)全頻數(shù)分布直方圖;
(3)若繪制扇形統(tǒng)計(jì)圖,分?jǐn)?shù)段60≤x<70所對(duì)應(yīng)扇形的圓心角的度數(shù)是 ;
(4)全校共有600名學(xué)生參加比賽,估計(jì)該校成績(jī)不低于80分的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,分別以ACBC為底邊,向△ABC外部作等腰△ADC和△CEB,點(diǎn)M為AB中點(diǎn),連接MDME分別與ACBC交于點(diǎn)F和點(diǎn)G.
求證四邊形MFCG是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解不等式組.請(qǐng)結(jié)合題意填空,完成本題的解答
(Ⅰ)解不等式①,得__________;
(Ⅱ)解不等式②,得__________;
(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來(lái):
(Ⅳ)原不等式組的解集為_(kāi)_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知射線DE與x軸和y軸分別交于點(diǎn)D(3,0)和點(diǎn)E(0,4).動(dòng)點(diǎn)C從點(diǎn)M(5,0)出發(fā),以1個(gè)單位長(zhǎng)度/秒的速度沿x軸向左作勻速運(yùn)動(dòng),與此同時(shí),動(dòng)點(diǎn)P從點(diǎn)D出發(fā),也以1個(gè)單位長(zhǎng)度/秒的速度沿射線DE的方向作勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,
(1)請(qǐng)用含t的代數(shù)式分別表示出點(diǎn)C與點(diǎn)P的坐標(biāo);
(2)以點(diǎn)C為中心,個(gè)單位長(zhǎng)度為半徑的⊙C與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),連接PA、PB.
①當(dāng)⊙C與射線DE有公共點(diǎn)時(shí),求t的取值范圍;
②當(dāng)△PAB為等腰三角形時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校選派一部分學(xué)生參加“六盤水市馬拉松比賽”,要為每位參賽學(xué)生購(gòu)買一頂帽子.商場(chǎng)規(guī)定:凡一次性購(gòu)買200頂或200頂以上,可按批發(fā)價(jià)付款;購(gòu)買200頂以下只能按零售價(jià)付款.如果為每位參賽學(xué)生購(gòu)買1頂,那么只能按零售價(jià)付款,需用900元;如果多購(gòu)買45頂,那么可以按批發(fā)價(jià)付款,同樣需用900元.問(wèn):
(1)參賽學(xué)生人數(shù)x在什么范圍內(nèi)?
(2)若按批發(fā)價(jià)購(gòu)買15頂與按零售價(jià)購(gòu)買12頂?shù)目钕嗤,那么參賽學(xué)生人數(shù)x是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,Rt△OCD的一邊OC在x軸上,∠OCD=90°,點(diǎn)D在第一象限,OC=6,DC=4,反比例函數(shù)的圖象經(jīng)過(guò)OD的中點(diǎn)A.
(1)求該反比例函數(shù)的解析式;
(2)若該反比例函數(shù)的圖象與Rt△OCD的另一邊DC交于點(diǎn)B,求過(guò)A、B兩點(diǎn)的直線的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com