【題目】如圖,在△ABC中,AB=AC,∠BAC=540,以AB為直徑的⊙O分別交AC,BC于點(diǎn)D,E,過(guò)點(diǎn)B作⊙O的切線,交AC的延長(zhǎng)線于點(diǎn)F。
(1)求證:BE=CE;
(2)求∠CBF的度數(shù);
(3)若AB=6,求的長(zhǎng)。
【答案】解:(1)如圖,連接AE,
∵AB是⊙O的直徑,
∴∠AEB=900,即AE⊥BC。
又∵AB=AC,∴BE=CE。
(2)∵∠BAC=540,AB=AC,∴∠ABC=630。
又∵BF是⊙O的切線,∴∠ABF=900。
∴∠CBF=∠ABF一∠ABC=270。
(3)連接OD,
∵OA=OD,∠BAC=540,∴∠AOD=720。
又∵AB=6,∴OA=2。
∴。
【解析】(1)連接AE,則根據(jù)直徑所對(duì)圓周角是直角的性質(zhì)得AE⊥BC,從而根據(jù)等腰三角形三線合一的性質(zhì)得出結(jié)論。
(2)由∠BAC=540,AB=AC,根據(jù)等腰三角形等邊對(duì)等角的性質(zhì)和三角形內(nèi)角和等于零180度求得∠ABC=630;由切線垂直于過(guò)切點(diǎn)直徑的性質(zhì)得∠ABF=900,從而由∠CBF=∠ABF一∠ABC得出結(jié)論。
(3)連接OD,根據(jù)同弧所對(duì)圓周角是圓心角一半的性質(zhì),求得∠AOD=720,根據(jù)弧長(zhǎng)公式即可求。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了節(jié)約資源,科學(xué)指導(dǎo)居民改善居住條件,小王向房管部門提出了一個(gè)購(gòu)買商品房的政策性方案.
人均住房面積(平方米) | 單價(jià)(萬(wàn)元/平方米) |
不超過(guò)30(平方米) | 0.3 |
超過(guò)30平方米不超過(guò)m(平方米)部分(45≤m≤60) | 0.5 |
超過(guò)m平方米部分 | 0.7 |
根據(jù)這個(gè)購(gòu)房方案:
(1)若某三口之家欲購(gòu)買120平方米的商品房,求其應(yīng)繳納的房款;
(2)設(shè)該家庭購(gòu)買商品房的人均面積為x平方米,繳納房款y萬(wàn)元,請(qǐng)求出y關(guān)于x的函數(shù)關(guān)系式;
(3)若該家庭購(gòu)買商品房的人均面積為50平方米,繳納房款為y萬(wàn)元,且57<y≤60 時(shí),求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)I和O分別是△ABC的內(nèi)心和外心,則∠AIB和∠AOB的關(guān)系為( 。
A. ∠AIB=∠AOBB. ∠AIB≠∠AOB
C. 2∠AIB﹣∠AOB=180°D. 2∠AOB﹣∠AIB=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線.
(1)求證:該拋物線與x軸總有交點(diǎn);
(2)若該拋物線與x軸有一個(gè)交點(diǎn)的橫坐標(biāo)大于3且小于5,求m的取值范圍;
(3)設(shè)拋物線與軸交于點(diǎn)M,若拋物線與x軸的一個(gè)交點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)恰好是點(diǎn)M,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(問(wèn)題解決)
一節(jié)數(shù)學(xué)課上,老師提出了這樣一個(gè)問(wèn)題:如圖1,點(diǎn)P是正方形ABCD內(nèi)一點(diǎn),PA=1,PB=2,PC=3.你能求出∠APB的度數(shù)嗎?
小明通過(guò)觀察、分析、思考,形成了如下思路:
思路一:將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得到△BP′A,連接PP′,求出∠APB的度數(shù);
思路二:將△APB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°,得到△CP'B,連接PP′,求出∠APB的度數(shù).
請(qǐng)參考小明的思路,任選一種寫出完整的解答過(guò)程.
(類比探究)
如圖2,若點(diǎn)P是正方形ABCD外一點(diǎn),PA=3,PB=1,PC=,求∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的邊長(zhǎng)為4cm,∠A=60°,弧BD是以點(diǎn)A為圓心,AB長(zhǎng)為半徑的弧,弧CD是以點(diǎn)B為圓心,BC長(zhǎng)為半徑的弧,則陰影部分的面積為( 。
A. 2cm2B. 4cm2C. 4cm2D. πcm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)均為1的方格紙中有線段AB和CD,點(diǎn)A,B,C,D均在小正方形頂點(diǎn)上.
(1)在方格紙中畫出面積為5的等腰直角△ABE,且點(diǎn)E在小正方形的頂點(diǎn)上;
(2)在方格紙中畫出面積為3的等腰△CDF,其中CD為一腰,且點(diǎn)F在小正方形的頂點(diǎn)上;
(3)在(1)(2)條件下,連接EF,請(qǐng)直接寫出線段EF長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+bx+c(a<0)經(jīng)過(guò)點(diǎn)(﹣1,0),且滿足4a+2b+c>0,有下列結(jié)論:①a+b>0;②﹣a+b+c>0;③b2﹣2ac>5a2.其中,正確結(jié)論的個(gè)數(shù)是( 。
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(﹣3,y1),B(2,y2)均在拋物線y=ax2+bx+c上,點(diǎn)P(m,n)是該拋物線的頂點(diǎn),若y1>y2≥n,則m的取值范圍是( )
A.﹣3<m<2B.﹣<m<-C.m>﹣D.m>2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com