【題目】已知拋物線甲:y=﹣2x2﹣1和拋物線乙的形狀相同,且兩條拋物線的對(duì)稱軸均為y軸,兩點(diǎn)距離5個(gè)單位長(zhǎng)度,它們的圖象如圖所示,則拋物線乙的解析式為______.
【答案】y=﹣2x2+4.
【解析】
設(shè)拋物線乙的解析式為y=ax2+bx+c,先拋物線甲:y=﹣2x2﹣1和拋物線乙的形狀相同,且兩條拋物線的對(duì)稱軸均為y軸,得出a=﹣2,b=0,再由兩點(diǎn)距離5個(gè)單位長(zhǎng)度,結(jié)合圖形得出c﹣(﹣1)=5,求出c=4.從而確定拋物線乙的解析式.
設(shè)拋物線乙的解析式為y=ax2+bx+c.
∵拋物線甲:y=﹣2x2﹣1和拋物線乙的形狀相同,且兩條拋物線的對(duì)稱軸均為y軸,∴a=﹣2,b=0.
又∵兩點(diǎn)距離5個(gè)單位長(zhǎng)度,∴c﹣(﹣1)=5,∴c=4.
即y=﹣2x2+4.
故答案為:y=﹣2x2+4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為厲行節(jié)能減排,倡導(dǎo)綠色出行,今年3月以來(lái).“共享單車”(俗稱“小黃車”)公益活動(dòng)登陸我市中心城區(qū),某公司擬在甲、乙兩個(gè)街道社區(qū)投放一批“小黃車”,這批自行車包括A、B兩種不同款型,請(qǐng)回答下列問(wèn)題:
問(wèn)題1:?jiǎn)蝺r(jià)
該公司早期在甲街區(qū)進(jìn)行了試點(diǎn)投放,共投放A、B兩型自行車各50輛,投放成本共計(jì)7500元,其中B型車的成本單價(jià)比A型車高10元,A、B兩型自行車的單價(jià)各是多少?
問(wèn)題2:投放方式
該公司決定采取如下投放方式:甲街區(qū)每1000人投放a輛“小黃車”,乙街區(qū)每1000人投放 輛“小黃車”,按照這種投放方式,甲街區(qū)共投放1500輛,乙街區(qū)共投放1200輛,如果兩個(gè)街區(qū)共有15萬(wàn)人,試求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)給定的一張矩形紙片ABCD進(jìn)行如下操作:先沿CE折疊,使點(diǎn)B落在CD邊上(如圖①),再沿CH折疊,這時(shí)發(fā)現(xiàn)點(diǎn)E恰好與點(diǎn)D重合(如圖②)
(1)根據(jù)以上操作和發(fā)現(xiàn),求的值;
(2)將該矩形紙片展開(kāi).
①如圖③,折疊該矩形紙片,使點(diǎn)C與點(diǎn)H重合,折痕與AB相交于點(diǎn)P,再將該矩形紙片展開(kāi).求證:∠HPC=90°;
②不借助工具,利用圖④探索一種新的折疊方法,找出與圖③中位置相同的P點(diǎn),要求只有一條折痕,且點(diǎn)P在折痕上,請(qǐng)簡(jiǎn)要說(shuō)明折疊方法.(不需說(shuō)明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一列快車由甲地開(kāi)往乙地,一列慢車由乙地開(kāi)往甲地,兩車同時(shí)出發(fā),勻速運(yùn)動(dòng),快車離乙地的路程()與行駛的時(shí)間()之間的函數(shù)關(guān)系,如圖中線段所示,慢車離乙地的路程()與行駛的時(shí)間()之間的函數(shù)關(guān)系,如圖中線段所示,則快、慢車相距225時(shí),行駛的時(shí)間是( )
A.1B.3C.1或3D.2或4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將半徑為2,圓心角為120°的扇形OAB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,點(diǎn)O,B的對(duì)應(yīng)點(diǎn)分別為O′,B′,連接BB′,則圖中陰影部分的面積是( )
A. B. 2- C. 2- D. 4-
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小紅用一張長(zhǎng)方形紙片ABCD進(jìn)行折紙,已知該紙片寬AB為8cm,長(zhǎng)BC為10cm.當(dāng)小紅折疊時(shí),頂點(diǎn)D落在BC邊上的點(diǎn)F處(折痕為AE).想一想,此時(shí)EC有多長(zhǎng)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,,的平分線與BC的延長(zhǎng)線交于點(diǎn)E,與DC交于點(diǎn)F,且點(diǎn)F為邊DC的中點(diǎn),,垂足為G,若,則AE的邊長(zhǎng)為
A. B. C. 4 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在△ABC中,AB=AC,D是△ABC外接圓劣弧AC上的點(diǎn)(不與A,C重合),延長(zhǎng)BD至E.
(1)求證:AD的延長(zhǎng)線平分∠CDE;
(2)若∠BAC=30°,且△ABC底邊BC邊上高為1,求△ABC外接圓的周長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com