【題目】如圖,點D,E在△ABC的邊BC上,AB=AC,AD=AE.
(1)求證:BD=CE;
(2)若AD=BD=DE,求∠BAC的度數(shù).
【答案】(1)見解析;(2)∠BAC=120°.
【解析】
(1)作AF⊥BC于點F,利用等腰三角形三線合一的性質(zhì)得到BF=CF,DF=EF,相減后即可得到正確的結(jié)論.
(2)根據(jù)等邊三角形的判定得到△ADE是等邊三角形,根據(jù)等邊三角形的性質(zhì)、等腰三角形的性質(zhì)以及角的和差關(guān)系即可求解.
(1)過點A作AF⊥BC于F.
∵AB=AC,AD=AE.
∴BF=CF,DF=EF.
∴BD=CE.
(2)∵AD=DE=AE
∴△ADE是等邊三角形,
∴∠DAE=∠ADE=60°.
∵AD=BD,
∴∠DAB=∠DBA.
∴∠DAB=∠ADE=30°.
同理可求得∠EAC=30°,
∴∠BAC=120°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.
(1)點P從點A開始沿AB邊向B以1cm/s的速度移動,點Q從B點開始沿BC邊向點C以2cm/s的速度移動.如果P,Q分別從A,B同時出發(fā),經(jīng)過幾秒,使△PBQ的面積等于8cm2?
(2)點P從點A開始沿AB邊向B以1cm/s的速度移動,點Q從B點開始沿BC邊向點C以2cm/s的速度移動.如果P,Q分別從A,B同時出發(fā),線段PQ能否將△ABC分成面積相等的兩部分?若能,求出運動時間;若不能說明理由.
(3)若P點沿射線AB方向從A點出發(fā)以1cm/s的速度移動,點Q沿射線CB方向從C點出發(fā)以2cm/s的速度移動,P,Q同時出發(fā),問幾秒后,△PBQ的面積為1?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1是一個長為2a ,寬為2b的長方形,沿圖中虛線剪開分成四塊小長方形,然后按如圖2的形狀拼成一個正方形.
(1)圖2的陰影部分的正方形的邊長是 ______.
(2)用兩種不同的方法求圖中陰影部分的面積.
(方法1)= _____________;
(方法2)=______________;
(3)觀察如圖2,寫出(a+b)2,(a-b)2,ab這三個代數(shù)式之間的等量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若﹣ a≥b,則a≤﹣2b,其根據(jù)是( )
A.不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變
B.不等式的兩邊都乘(或除以)同一個正數(shù),不等號的方向不變
C.不等式的兩邊都乘(或除以)同一個負數(shù),不等號的方向改變
D.以上答案均不對
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校利用暑假進行田徑場的改造維修,項目承包單位派遣甲施工隊進場施工,計劃用40天時間完成整個工程.當甲施工隊工作5天后,承包單位接到通知,有一大型活動要在該田徑場舉行,要求比原計劃提前14天完成整個工程,于是承包單位派遣乙施工隊與甲施工隊共同完成剩余工程,結(jié)果按通知要求如期完成了整個工程.
(1)若乙施工隊單獨施工,完成整個工程需要多少天?
(2)若此項工程甲、乙施工隊同時進場施工,完成整個工程需要多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了創(chuàng)建全國衛(wèi)生城市,某社區(qū)要清理一個衛(wèi)生死角內(nèi)的垃圾,租用甲、乙兩車運送,兩車各運12趟可完成,需支付運費4800元.已知甲、乙兩車單獨運完此堆垃圾,乙車所運趟數(shù)是甲車的2倍,且乙車每趟運費比甲車少200元.
(1)求甲、乙兩車單獨運完此堆垃圾各需運多少趟?
(2)若單獨租用一臺車,租用哪臺車合算?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點H,∠K-∠H=33°,則∠K=__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某軟件科技公司20人負責研發(fā)與維護游戲、網(wǎng)購、視頻和送餐共4款軟件.投入市場后,游戲軟件的利潤占這4款軟件總利潤的40%.如圖是這4款軟件研發(fā)與維護人數(shù)的扇形統(tǒng)計圖和利潤的條形統(tǒng)計圖.
根據(jù)以上信息,網(wǎng)答下列問題
(1)直接寫出圖中a,m的值;
(2)分別求網(wǎng)購與視頻軟件的人均利潤;
(3)在總?cè)藬?shù)和各款軟件人均利潤都保持不變的情況下,能否只調(diào)整網(wǎng)購與視頻軟件的研發(fā)與維護人數(shù),使總利潤增加60萬元?如果能,寫出調(diào)整方案;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c與直線y=﹣x+3相交于坐標軸上的A,B兩點,頂點為C.
(1)填空:b= , c=;
(2)將直線AB向下平移h個單位長度,得直線EF.當h為何值時,直線EF與拋物線y=x2+bx+c沒有交點?
(3)直線x=m與△ABC的邊AB,AC分別交于點M,N.當直線x=m把△ABC的面積分為1:2兩部分時,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com