【題目】如圖,正方形ABCD和正方形AEFG有一個公共點A,點G、E分別在線段AD、AB上.
(1)連接DF、BF,若將正方形AEFG繞點A按順時針方向旋轉(zhuǎn),判斷命題“在旋轉(zhuǎn)的過程中,線段DF與BF的長始終相等”是否正確?答: .
(2)若將正方形AEFG繞點A按順時針方向旋轉(zhuǎn),連接DG,在旋轉(zhuǎn)過程中,你能否找到一條線段的長與線段DG的長始終相等?并以圖為例說明理由.
【答案】
(1)不正確
(2)解:連接BE,可得△ADG≌△ABE,
則DG=BE.如圖,
∵四邊形ABCD是正方形,
∴AD=AB,
∵四邊形GAEF是正方形,
∴AG=AE,
又∵∠DAG+∠GAB=90°,∠BAE+∠GAB=90°,
∴∠DAG=∠BAE,
∴△DAG≌△BAE,
∴DG=BE.
【解析】(1)顯然,當(dāng)A,F(xiàn),B在同一直線上時,DF≠BF.(2)注意使用兩個正方形的邊和90°的角,可判斷出△DAG≌△BAE,那么DG=BE.
【考點精析】本題主要考查了正方形的性質(zhì)和旋轉(zhuǎn)的性質(zhì)的相關(guān)知識點,需要掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形;①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以半徑為1的圓的內(nèi)接正三角形、正方形、正六邊形的邊心距為三邊作三角形,則該三角形的面積是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)活動課上,老師提出了一個問題:
我們知道,三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和,那么三角形的一個內(nèi)角與它不相鄰的兩個外角的和之間存在何種數(shù)量關(guān)系?
(1)獨立思考,請你完成老師提出的問題:
如圖所示,已知∠DBC和∠BCE分別為△ABC的兩個外角,試探究∠A和∠DBC,∠BCE之間的數(shù)量關(guān)系.
解:
⑵合作交流,“創(chuàng)新小組”受此問題的啟發(fā):分別作外角∠CBD和∠BCE的平分線BF和CF,交于點F(如圖所示),那么∠A與∠F之間有何數(shù)量關(guān)系?請寫出解答過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A、B兩點,與y軸交于C點,且對稱軸為x=1,點B坐標(biāo)為(﹣1,0).則下面的四個結(jié)論:
①2a+b=0;②4a﹣2b+c<0;③ac>0;④當(dāng)y<0時,x<﹣1或x>2.
其中正確的個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,E,F(xiàn)分別為AD,BC邊上的一點,增加下列條件,不能得出BE∥DF的是( )
A. AE=CF B. BE=DF C. ∠EBF=∠FDE D. ∠BED=∠BFD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從邊長為a的正方形中剪掉一個邊長為b的正方形(如圖1),然后將剩余部分拼成一個長方形(如圖2).
(1)上述操作能驗證的等式是 ;(請選擇正確的一個)
A、a2﹣2ab+b2=(a﹣b)2 B、a2﹣b2=(a+b)(a﹣b) C、a2+ab=a(a+b)
(2)應(yīng)用你從(1)選出的等式,完成下題:
計算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC紙片沿DE折疊,使點A落在點A'處,且A'B平分∠ABC,A'C平分∠ACB,若∠BA'C=110°,則∠1+∠2的度數(shù)為( )
A. 80°; B. 90°; C. 100°; D. 110°;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE交AE延長線于D,DM⊥AC交AC的延長線于M,連接CD,以下四個結(jié)論:
①∠ADC=45°;②BD=AE;③AC+CE=AB;④AC+AB=2AM.其中正確的結(jié)論有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列4個結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0;其中正確的結(jié)論有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com