【題目】如圖,ABO的直徑,點DAB的延長線上,點CO上,CACD,∠CDA30°.

1)試判斷直線CDO的位置關系,并說明理由;

2)若O的半徑為4,

用尺規(guī)作出點ACD所在直線的距離;

求出該距離.

【答案】1CDO相切.理由見解析;(2如圖,AH為所作;見解析;ACD所在直線的距離為6

【解析】

1)連接OC,如圖,利用等腰三角形的性質得到∠CAD=∠CDA30°,∠OCA=∠OAC30°,則利用三角形內角和計算出∠OCD90°,然后根據(jù)切線的判定定理可判斷CD為⊙O的切線;

2)①如圖,利用基本作圖,過點AAHCDH即可;②在RtOCD中利用含30度的直角三角形三邊的關系得到OD8,則AD12,從而可求出AH的長.

1CD與⊙O相切.

理由如下:連接OC,如圖,

CACD,

∴∠CAD=∠CDA30°,

OAOC,

∴∠OCA=∠OAC30°

∴∠OCD180°3×30°90°,

OCCD,

CD為⊙O的切線;

2)①如圖,AH為所作;

②在RtOCD中,∵∠D30°,

OD2OC8

AD8+412,

RtADH中,AHAD6,

即點ACD所在直線的距離為6

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點EBC上一點,BFAEDC于點F,若AB5,BE2,則AF____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,ECD邊的中點,且BEAC于點F,連接DF,則下列結論錯誤的是( 。

A. ADC∽△CFBB. ADDF

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形OABC的邊長為6,A,C分別位于x軸、y軸上,點PAB上,CPOB于點Q,函數(shù)y的圖象經(jīng)過點Q,若SBPQSOQC,則k的值為___

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知A,B,CD四點的坐標依次為(0,0),(6,2),(88),(2,6),若一次函數(shù)ymx6m+2m0)圖象將四邊形ABCD的面積分成13兩部分,則m的值為(  )

A. 4B. ,﹣5C. D. ,﹣4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,BM,DN分別平分∠ABC,∠CDA,沿BP折疊,點A恰好落在BM上的點E處,延長PEDN于點F沿DQ折疊,點C恰好落在DN上的點G處,延長QGBM于點H,若四邊形EFGH恰好是正方形,且邊長為1,則矩形ABCD的面積為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系內,A,Bx軸上兩點,以AB為直徑的⊙My軸于C,D兩點,C的中點,弦AEy軸于點F,且點A的坐標為(2,0),CD8

1)求⊙M的半徑;

2)動點P在⊙M的圓周上運動.

①如圖1,當FP的長度最大時,點P記為P,在圖1中畫出點P0,并求出點P0橫坐標a的值;

②如圖1,當EP平分∠AEB時,求EP的長度;

③如圖2,過點D作⊙M的切線交x軸于點Q,當點P與點A,B不重合時,請證明為定值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸交于A3,0和B1,0兩點,交y軸于點C0,3,點C、D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點B、D

1求二次函數(shù)的解析式;

2根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍;

3若直線與y軸的交點為E,連結AD、AE,求ADE的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2、圖3是某公共汽車雙開門的俯視示意圖,ME,EF,FN是門軸的滑動軌道,,兩門AB,CD的門軸A,B,C,D都在滑動軌道上,兩門關閉時圖2A,D分別在E,F處,門縫忽略不計(即B,C重合);兩門同時開啟,A,D分別沿,的方向勻速滑動,帶動B,C滑動;B到達E時,C恰好到達F,此時兩門完全開啟.已知.(1)如圖3,當時,______cm.(2)在(1)的基礎上,當AM方向繼續(xù)滑動15cm時,四邊形ABCD的面積為______

查看答案和解析>>

同步練習冊答案