分析 先根據(jù)已知條件求出AC的長及∠B的度數(shù),再根據(jù)圖形旋轉(zhuǎn)的性質(zhì)及等邊三角形的判定定理判斷出△BCD的形狀,進而得出∠DCF的度數(shù),由直角三角形的性質(zhì)可判斷出DF是△ABC的中位線,由三角形的面積公式即可得出結(jié)論.
解答 解:∵△ABC是直角三角形,∠ACB=90°,∠A=30°,BC=2,
∴∠B=60°,AC=BC×cot∠A=2×$\sqrt{3}$=2 $\sqrt{3}$,AB=2BC=4,
∵△EDC是△ABC旋轉(zhuǎn)而成,
∴BC=CD=BD=$\frac{1}{2}$AB=2,
∵∠B=60°,
∴△BCD是等邊三角形,
∴∠BCD=60°,
∴∠DCF=∠BCA-∠BCD=30°,
∵∠EDC=∠B=60°,
∴∠DFC=90°,
即DE⊥AC,
∴DE∥BC,
∵BD=$\frac{1}{2}$AB=2,
∴DF是△ABC的中位線,
∴DF=$\frac{1}{2}$BC=$\frac{1}{2}$×2=1,CF=$\frac{1}{2}$AC=$\frac{1}{2}$×2 $\sqrt{3}$=$\sqrt{3}$,
∴S△CDF=$\frac{1}{2}$DF×CF=$\frac{1}{2}$×$\sqrt{3}$=$\frac{\sqrt{3}}{2}$cm2.
故答案為:$\frac{\sqrt{3}}{2}$.
點評 本題考查的是圖形旋轉(zhuǎn)的性質(zhì)及直角三角形的性質(zhì)、三角形中位線定理及三角形的面積公式,熟知圖形旋轉(zhuǎn)的性質(zhì)是解答此題的關(guān)鍵,即:
①對應(yīng)點到旋轉(zhuǎn)中心的距離相等;
②對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;
③旋轉(zhuǎn)前、后的圖形全等.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 65° | B. | 50° | C. | 45° | D. | 40° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | $\frac{12}{5}$ | D. | $\frac{4}{5}$$\sqrt{10}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.63×104 | B. | 6.3×103 | C. | 63×102 | D. | 6.3×106 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 40° | B. | 50° | C. | 60° | D. | 70° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com