1.如圖,在單位長度為1的數(shù)軸上,點A、B表示的兩個數(shù)互為相反數(shù),那么點A表示的數(shù)是( 。
A.2B.-2C.3D.-3

分析 根據(jù)互為相反數(shù)的概念,原點應(yīng)在AB的中點處,則可以推導(dǎo)得出原點的位置得到A所表示的數(shù).

解答 解:∵點A、B表示的兩個數(shù)互為相反數(shù),從圖觀察可知AB=6,
∴原點應(yīng)在AB的中點處即原點到A點距離為3,
∵點A在原點左側(cè),
∴點A表示的數(shù)為-3.
故選:D.

點評 本題考查數(shù)軸、互為相反數(shù)的概念,解題的關(guān)鍵是判斷出數(shù)軸原點位于AB的中點處,結(jié)合數(shù)軸的性質(zhì)可得到答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

12.已知x>0,且(x-1)2-324=0,則x+1的值為(  )
A.17B.18C.19D.20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.正方形ABCD中,點E為AB的中點,若將△BCE沿CE對折,點B將落在點F處,連接EF并延長交AD、CD的延長線分別于G、H.
(1)若BC=4,求FG的長.
(2)求證:CH=5DH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.如圖,已知:在平面直角坐標(biāo)系中,直線l與y軸相交于點A(0,m)其中m<0,與x軸相交于點B(4,0).拋物線y=ax2+bx(a>0)的頂點為F,它與直線l相交于點C,其對稱軸分別與直線l和x軸相交于點D和點E.
(1)設(shè)a=$\frac{1}{2}$,m=-2時,
①求出點C、點D的坐標(biāo);
②拋物線y=ax2+bx上是否存在點G,使得以G、C、D、F四點為頂點的四邊形為平行四邊形?如果存在,求出點G的坐標(biāo);如果不存在,請說明理由.
(2)當(dāng)以F、C、D為頂點的三角形與△BED相似且滿足三角形FAC的面積與三角形FBC面積之比為1:3時,求拋物線的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

16.如圖,正方形ACEF的邊長為2,以AC為一邊在同側(cè)做等腰三角形ABC,且∠BAC=150°,BC交AE于點D,下列結(jié)論:①EF=ED;②S△DEC=1+$\frac{\sqrt{3}}{3}$;③AD+CD=BD,④S△ABD=$\frac{\sqrt{3}}{3}$,其中正確結(jié)論的序號是②③④.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

6.計算:$\frac{{a}^{2}-^{2}}$÷$\frac{1}{a+b}$=$\frac{a-b}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

13.下列命題中,假命題是(  )
A.鄰角相等的平行四邊形是矩形B.對角線垂直的平行四邊形是矩形
C.四個角相等的四邊形是矩形D.對角線相等的平行四邊形是矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

10.一個正多邊形的內(nèi)角和為540°,則這個正多邊形的每個外角的度數(shù)等于(  )
A.60°B.72°C.90°D.108°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

9.分式方程$\frac{x+1}{2}$=$\frac{3}{x}$的解是x=-3或2.

查看答案和解析>>

同步練習(xí)冊答案