分析 法1:由平行四邊形對(duì)邊平行,且CF與AD垂直,得到CF與BC垂直,根據(jù)AE與BC垂直,得到AE與CF平行,得到一對(duì)內(nèi)錯(cuò)角相等,利用等角的補(bǔ)角相等得到∠AGB=∠DHC,根據(jù)AB與CD平行,得到一對(duì)內(nèi)錯(cuò)角相等,再由AB=CD,利用AAS得到三角形ABG與三角形CDH全等,利用全等三角形對(duì)應(yīng)邊相等得到AG=CH,利用一組對(duì)邊平行且相等的四邊形為平行四邊形即可得證;
法2:連接AC,與BD交于點(diǎn)O,利用平行四邊形的對(duì)角線互相平分得到OA=OC,OB=OD,再由AB與CD平行,得到一對(duì)內(nèi)錯(cuò)角相等,根據(jù)CF與AD垂直,AE與BC垂直,得一對(duì)直角相等,利用ASA得到三角形ABG與三角形CDH全等,利用全等三角形對(duì)應(yīng)邊相等得到BG=DH,根據(jù)等式的性質(zhì)得到OG=OH,利用對(duì)角線互相平分的四邊形為平行四邊形即可得證.
解答 證明:法1:在□ABCD中,AD∥BC,AB∥CD,
∵CF⊥AD,
∴CF⊥BC,
∵AE⊥BC,
∴AE∥CF,即AG∥CH,
∴∠AGH=∠CHG,
∵∠AGB=180°-∠AGH,∠DHC=180°-∠CHG,
∴∠AGB=∠DHC,
∵AB∥CD,
∴∠ABG=∠CDH,
∴△ABG≌CDH,
∴AG=CH,
∴四邊形AGCH是平行四邊形;
法2:連接AC,與BD相交于點(diǎn)O,
在□ABCD中,AO=CO,BO=DO,∠ABE=∠CDF,AB∥CD,
∴∠ABG=∠CDH,
∵CF⊥AD,AE⊥BC,
∴∠AEB=∠CFD=90°,
∴∠BAG=∠DCH,
∴△ABG≌CDH,
∴BG=DH,
∴BO-BG=DO-DH,
∴OG=OH,
∴四邊形AGCH是平行四邊形.
點(diǎn)評(píng) 此題考查了平行四邊形的判定與性質(zhì),熟練掌握平行四邊形的判定與性質(zhì)是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1的平方根是1 | B. | 1的算術(shù)平方根是1 | ||
C. | -2是2的算術(shù)平方根 | D. | -1的平方根是-1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | |$\overrightarrow{AB}$|=|$\overrightarrow{BA}$| | B. | |$\overrightarrow{AB}$|+|$\overrightarrow{BA}$|=0 | C. | $\overrightarrow{AB}$+$\overrightarrow{BA}$=0 | D. | $\overrightarrow{AB}$=$\overrightarrow{BA}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com