【題目】如圖,已知拋物線y= x2﹣ (b+1)x+ (b是實(shí)數(shù)且b>2)與x軸的正半軸分別交于點(diǎn)A、B(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸的正半軸交于點(diǎn)C.
(1)點(diǎn)B的坐標(biāo)為 , 點(diǎn)C的坐標(biāo)為(用含b的代數(shù)式表示);
(2)請(qǐng)你探索在第一象限內(nèi)是否存在點(diǎn)P,使得四邊形PCOB的面積等于2b,且△PBC是以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由;
(3)請(qǐng)你進(jìn)一步探索在第一象限內(nèi)是否存在點(diǎn)Q,使得△QCO,△QOA和△QAB中的任意兩個(gè)三角形均相似(全等可作相似的特殊情況)?如果存在,求出點(diǎn)Q的坐標(biāo);如果不存在,請(qǐng)說明理由.
【答案】
(1)(b,0);(0, )
(2)
解:存在,
假設(shè)存在這樣的點(diǎn)P,使得四邊形PCOB的面積等于2b,且△PBC是以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形.
設(shè)點(diǎn)P的坐標(biāo)為(x,y),連接OP.
則S四邊形PCOB=S△PCO+S△POB= x+ by=2b,
∴x+4y=16.
過P作PD⊥x軸,PE⊥y軸,垂足分別為D、E,
∴∠PEO=∠EOD=∠ODP=90°.
∴四邊形PEOD是矩形.
∴∠EPD=90°.
∴∠EPC=∠DPB.
∴△PEC≌△PDB,∴PE=PD,即x=y.
由 解得
由△PEC≌△PDB得EC=DB,即 ﹣ =b﹣ ,
解得b= >2符合題意.
∴P的坐標(biāo)為( , )
(3)
解:假設(shè)存在這樣的點(diǎn)Q,使得△QCO,△QOA和△QAB中的任意兩個(gè)三角形均相似.
∵∠QAB=∠AOQ+∠AQO,
∴∠QAB>∠AOQ,∠QAB>∠AQO.
∴要使△QOA與△QAB相似,只能∠QAO=∠BAQ=90°,即QA⊥x軸.
∵b>2,
∴AB>OA,
∴∠Q0A>∠ABQ.
∴只能∠AOQ=∠AQB.此時(shí)∠OQB=90°,
由QA⊥x軸知QA∥y軸.
∴∠COQ=∠OQA.
∴要使△QOA與△OQC相似,只能∠QCO=90°或∠OQC=90°.
(I)當(dāng)∠OCQ=90°時(shí),△CQO≌△QOA.
∴AQ=CO= .
由AQ2=OAAB得:( )2=b﹣1.
解得:b=8±4 .
∵b>2,
∴b=8+4 .
∴點(diǎn)Q的坐標(biāo)是(1,2+ ).
(II)當(dāng)∠OQC=90°時(shí),△OCQ∽△QOA,
∴ ,即OQ2=OCAQ.
又OQ2=OAOB,
∴OCAQ=OAOB.即 AQ=1×b.
解得:AQ=4,此時(shí)b=17>2符合題意,
∴點(diǎn)Q的坐標(biāo)是(1,4).
∴綜上可知,存在點(diǎn)Q(1,2+ )或Q(1,4),使得△QCO,△QOA和△QAB中的任意兩個(gè)三角形均相似.
【解析】解:(1)令y=0,即y= x2﹣ (b+1)x+ =0,
解得:x=1或b,
∵b是實(shí)數(shù)且b>2,點(diǎn)A位于點(diǎn)B的左側(cè),
∴點(diǎn)B的坐標(biāo)為(b,0),
令x=0,
解得:y= ,
∴點(diǎn)C的坐標(biāo)為(0, ),
所以答案是:(b,0),(0, );
【考點(diǎn)精析】利用二次函數(shù)的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,∠B=90°,以AB上的一點(diǎn)O為圓心,以O(shè)A為半徑的圓交AC于點(diǎn)D,交AB于點(diǎn)E.
(1)求證:ACAD=ABAE;
(2)如果BD是⊙O的切線,D是切點(diǎn),E是OB的中點(diǎn),當(dāng)BC=2時(shí),求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,CA=CB=2,CD⊥AB于D,點(diǎn)P是線段CD上的一個(gè)動(dòng)點(diǎn),以點(diǎn)P為直角頂點(diǎn)向下作等腰直角△PBE,
連接DE ,則DE的最小值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在數(shù)軸l上,一動(dòng)點(diǎn)Q從原點(diǎn)O出發(fā),沿直線l以每秒鐘2個(gè)單位長度的速度來回移動(dòng),其移動(dòng)方式是先向右移動(dòng)1個(gè)單位長度,再向左移動(dòng)2個(gè)單位長度,又向右移動(dòng)3個(gè)單位長度,再向左移動(dòng)4個(gè)單位長度,又向右移動(dòng)5個(gè)單位長度…
(1)求出5秒鐘后動(dòng)點(diǎn)Q所處的位置;
(2)如果在數(shù)軸l上還有一個(gè)定點(diǎn)A,且A與原點(diǎn)O相距20個(gè)單位長度,問:動(dòng)點(diǎn)Q從原點(diǎn)出發(fā),可能與點(diǎn)A重合嗎?若能,則第一次與點(diǎn)A重合需多長時(shí)間?若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,E是AD中點(diǎn),將△ABE沿直線BE折疊后得到△GBE,延長BG交CD于F,若AB=6,BC=,則CF的長為_______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,對(duì)角線AC與BD相交于O點(diǎn),AB=5,AC=6,過D點(diǎn)作DE//AC交BC的延長線于E點(diǎn)
(1)求△BDE的周長
(2)點(diǎn)P為線段BC上的點(diǎn),連接PO并延長交AD于點(diǎn)Q,求證:BP=DQ
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“低碳環(huán)保,你我同行”.儀征市區(qū)的公共自行車給市民出行帶來不少方便.我校數(shù)學(xué)社團(tuán)小學(xué)員走進(jìn)小區(qū)隨機(jī)選取了市民進(jìn)行調(diào)查,調(diào)查的問題是“您大概多久使用一次公共自行車?”,將本次調(diào)查結(jié)果歸為四種情況: A.每天都用;B.經(jīng)常使用;C.偶爾使用;D.從未使用.
將這次調(diào)查情況整理并繪制如下兩幅統(tǒng)計(jì)圖:
根據(jù)圖中的信息,解答下列問題:
(1)本次活動(dòng)共有位市民參與調(diào)查;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)根據(jù)統(tǒng)計(jì)結(jié)果,若市區(qū)有26萬市民,請(qǐng)估算每天都用公共自行車的市民約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】仔細(xì)觀察下面由“※”組成的圖案和算式,解答問題:
1+3=4=22
1+3+5=9=32
1+3+5+7=16=42
1+3+5+7+9=25=52
(1)請(qǐng)計(jì)算:
1+3+5+7+9+ … +19= ;
(2)請(qǐng)猜想:
1+3+5+7+9+ … +(2n-1)+(2n+1)+(2n+3)= ;
(3)請(qǐng)用上述規(guī)律計(jì)算:
103+105+107+ … +2013+2015
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com