【題目】上網(wǎng)流量、語音通話是手機通信消費的兩大主體,目前,某通信公司推出消費優(yōu)惠新招﹣﹣“定制套餐”,消費者可根據(jù)實際情況自由定制每月上網(wǎng)流量與語音通話時間,并按照二者的階梯資費標準繳納通信費.下表是流量與語音的階梯定價標準.

【小提示:階梯定價收費計算方法,如600分鐘語音通話費=0.15×500+0.12×600500)=87元】

1)甲定制了600MB的月流量,花費48元;乙定制了2GB的月流量,花費120.4元,求a,b的值.(注:1GB=1024MB

2)甲的套餐費用為199元,其中含600MB的月流量;丙的套餐費用為244.2元,其中包含1GB的月流量,二人均定制了超過1000分鐘的每月通話時間,并且丙的語音通話時間比甲多300分鐘,求m的值.

【答案】1a的值為0.15元/MB,b的值為0.05元/MB;(2m的值為0.08元/分鐘.

【解析】(1)依題意得:,解得:,a的值為0.15元/MB,b的值為0.05元/MB

2)設(shè)甲的套餐中定制xx1000)分鐘的每月通話時間,則丙的套餐中定制(x+300)分鐘的每月通話時間,丙定制了1GB的月流量,需花費100×0.15+500100×0.07+1024500×0.05=69.2(元),依題意得:,解得:m=0.08

答:m的值為0.08元/分鐘.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,甲、乙兩動點分別從正方形ABCD的頂點A、C同時沿正方形的邊開始移動,甲點依順時針方向環(huán)行,乙點依逆時針方向環(huán)行.若甲的速度是乙的速度的3倍,則它們第2015次相遇在邊 上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABCD中,ABBC=4:3,周長為28cm,則AD= ____cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】完成下列證明過程. 如圖,在△ABC中,∠B=∠C,D、E、F分別在AB、BC、AC上,且BD=CE,∠DEF=∠B,說明ED=EF.
解:∵∠DEC=∠B+∠BDE (),
又∵∠DEF=∠B(已知),
∴∠=∠(等式性質(zhì)).
在△EBD與△FCE中,
=∠(已證),
=(已知),
∠B=∠C(已知),
∴△EBD≌△FCE().
∴ED=EF ().

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在學習中,小明發(fā)現(xiàn):當a=-1,0,1時,a2-8a+20的值都是正數(shù),于是小明猜想:當a為任意整數(shù)時,a2-8a+20的值都是正數(shù),小明的猜想正確嗎?簡要說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校規(guī)劃在一塊長AD18m,寬AB13m的長方形場地ABCD上,設(shè)計分別與AD,AB平行的橫向通道和縱向通道,其余部分鋪上草皮.

1)如圖1,若設(shè)計三條通道,一條橫向,兩條縱向,且它們的寬度相等,其余六塊草坪相同,其中一塊草坪兩邊之比AM:AN=89,問通道的寬是多少?

2)為了建造花壇,要修改(1)中的方案,如圖2,將三條通道改為兩條通道,縱向的寬度改為橫向?qū)挾鹊?/span>2倍,其余四塊草坪相同,且每一塊草坪均有一邊長為8m,這樣能在這些草坪建造花壇.如圖3,在草坪RPCQ中,已知REPQ于點E,CFPQ于點F,求花壇RECF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在下列圖形的性質(zhì)中,平行四邊形不一定具有的是(  )

A. 對角相等 B. 對角互補 C. 對邊相等 D. 對角線互相平分

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若正多邊形的一個內(nèi)角是120°,則這個正多邊形的邊數(shù)為(
A.8
B.7
C.6
D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:
(1)
(2) +
(3) ×
(4)(1﹣ )÷

查看答案和解析>>

同步練習冊答案