【題目】若,是關(guān)于的方程的兩個(gè)實(shí)數(shù)根,且(是整數(shù)),則稱方程為“偶系二次方程”.如方程,,,,,都是“偶系二次方程”.
判斷方程是否是“偶系二次方程”,并說(shuō)明理由;
對(duì)于任意一個(gè)整數(shù),是否存在實(shí)數(shù),使得關(guān)于的方程是“偶系二次方程”,并說(shuō)明理由.
【答案】(1)不是,理由見(jiàn)解析;(2)存在.理由見(jiàn)解析
【解析】
(1)求出原方程的根,再代入|x1|+|x2|看結(jié)果是否為2的整數(shù)倍就可以得出結(jié)論;
(2)由條件x2-6x-27=0和x2+6x-27=0是偶系二次方程建模,設(shè)c=mb2+n,就可以表示出c,然后根據(jù)公式法就可以求出其根,再代入|x1|+|x2|就可以得出結(jié)論.
不是,
解方程得,,,
,
∵不是整數(shù),
∴不是“偶系二次方程;
存在.理由如下:
∵和是偶系二次方程,
∴假設(shè),
當(dāng),時(shí),
,
∵是偶系二次方程,
∴時(shí),,
∴,
∵是偶系二次方程,
當(dāng)時(shí),,
∴可設(shè),
對(duì)于任意一個(gè)整數(shù),時(shí),
,
,
∴,,
∴,
∵是整數(shù),
∴對(duì)于任何一個(gè)整數(shù),時(shí),關(guān)于的方程是“偶系二次方程”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】鄰邊不相等的平行四邊形紙片,剪去一個(gè)菱形,余下一個(gè)四邊形,稱為第一次操作;在余下的四邊形紙片中再剪去一個(gè)菱形,又剩下一個(gè)四邊形,稱為第二次操作;…依此類推,若第次操作余下的四邊形是菱形,則稱原平行四邊形為階準(zhǔn)菱形.如圖,中,若,,則為階準(zhǔn)菱形.
判斷與推理:
①鄰邊長(zhǎng)分別為和的平行四邊形是________階準(zhǔn)菱形;
②小明為了剪去一個(gè)菱形,進(jìn)行了如下操作:如圖,把沿折疊(點(diǎn)在上),使點(diǎn)落在邊上的點(diǎn),得到四邊形.請(qǐng)證明四邊形是菱形.
操作、探究與計(jì)算:
①已知的鄰邊長(zhǎng)分別為,,且是階準(zhǔn)菱形,請(qǐng)畫(huà)出及裁剪線的示意圖,并在圖形下方寫(xiě)出的值;
②已知的鄰邊長(zhǎng)分別為,,滿足,,請(qǐng)寫(xiě)出是幾階準(zhǔn)菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某產(chǎn)品的進(jìn)價(jià)為元,該產(chǎn)品的日銷量(件)是日銷價(jià)(元)的反比例函數(shù),且當(dāng)售價(jià)為每件元時(shí),每日可售出件,為獲得日利潤(rùn)為元,售價(jià)應(yīng)定為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,①是一個(gè)長(zhǎng)為2m、寬為2n的長(zhǎng)方形,沿圖中虛線用剪刀平均分成四塊小長(zhǎng)方形,然后按圖②的形狀拼成一個(gè)正方形.
(1)②圖中陰影部分的面積為___________;
(2)觀察圖②,請(qǐng)你寫(xiě)出式子、、之間的等量關(guān)系是_________;
(3)若,,則______________;
(4)實(shí)際上有許多恒等式可以用圖形的面積來(lái)表示.如圖③,它表示等式:____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出以下五個(gè)方程:
①;②;③;④;⑤
其中一元二次方程有________(寫(xiě)序號(hào))
請(qǐng)你選擇其中的一個(gè)一元二次方程用適當(dāng)?shù)姆椒ㄇ蟪鏊慕猓?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一位籃球運(yùn)動(dòng)員在距籃球筐下米處跳起投籃,球的運(yùn)行線路為拋物線,當(dāng)球運(yùn)行到水平距離為米時(shí)達(dá)到最高高度米,然后準(zhǔn)確地落入籃筐,已知籃圈中心到地面的高度為米,該運(yùn)動(dòng)員的身高為米,在這次投籃中,球在該運(yùn)動(dòng)員的頭頂上方米處出手,則當(dāng)球出手時(shí),該運(yùn)動(dòng)員離地面的高度為________米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線與軸的交點(diǎn)分別為,.
求證:拋物線總與軸有兩個(gè)不同的交點(diǎn);
若,求此拋物線的解析式.
已知軸上兩點(diǎn),,若拋物線與線段有交點(diǎn),請(qǐng)寫(xiě)出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)銷售一批名牌襯衫,平均每天可售出件,每件盈利元,為了擴(kuò)大銷售,增加盈利,盡快減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價(jià)元,商場(chǎng)平均每天可多售出件,若商場(chǎng)平均每天要盈利元,每件襯衫應(yīng)降價(jià)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,直線AB交軸于A(2,0),交軸負(fù)半軸于B(0,-10),C為x軸正半軸上一點(diǎn),且OC=5OA.
(1)求△ABC的面積.
(2)延長(zhǎng)BA到P(自己補(bǔ)全圖形),使得PA=AB,過(guò)點(diǎn)P作PM⊥OC于M,求P點(diǎn)的坐標(biāo).
(3)如圖,D是第三象限內(nèi)一動(dòng)點(diǎn),直線BE⊥CD于E, OF⊥OD交BE延長(zhǎng)線于F.當(dāng)D點(diǎn)運(yùn)動(dòng)時(shí),的大小是否發(fā)生變化?若改變,請(qǐng)說(shuō)明理由;若不變,求出這個(gè)比值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com