【題目】學(xué)了一元二次方程的根與系數(shù)的關(guān)系后,小亮興奮地說:若設(shè)一元二次方程的兩個(gè)根為x1,x2,就能快速求出,x12+x22,…的值了.比如設(shè)x1,x2是方程x2+2x-3=0的兩個(gè)根,則x1+x2=-2,x1x2=-3,得.”

(1)小亮的說法對(duì)嗎?簡要說明理由;

(2)寫一個(gè)你最喜歡的一元二次方程,并求出兩根的平方和.

【答案】(1) 小亮的說法不對(duì),理由見解析;(2)答案不唯一,詳見解析

【解析】

根據(jù):如果方程ax2bxc0(a≠0)有兩個(gè)實(shí)數(shù)根x1x2,那么x1x2=-,x1x2.

注意分式的分母不能等于0.

(1)小亮的說法不對(duì).若有一根為零時(shí),就無法計(jì)算的值了,因?yàn)榱阕鞒龜?shù)無意義

(2)答案不唯一,如:一元二次方程x2-5x-6=0.設(shè)方程的兩個(gè)根分別為x1,x2,則x1+x2=5,x1·x2=-6.

又∵x12+x22+2x1x2-2x1x2=(x1+x2)2-2x1x2,將x1+x2=5,x1·x2=-6代入,

x12+x22=52-2×(-6)=37

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把的三邊、分別向外延長一倍,將得到的點(diǎn)、、順次連接成,若的面積是5,則的面積是( )

A.15B.18C.21D.35

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】反比例函數(shù)y=的圖象既是_________圖形又是_________圖形,它有_________條對(duì)稱軸,且對(duì)稱軸互相_________,對(duì)稱中心是_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某籃球運(yùn)動(dòng)員去年共參加40場比賽,其中3分球的命中率為0.25,平均每場有123分球未投中.

(1)該運(yùn)動(dòng)員去年的比賽中共投中多少個(gè)3分球?

(2)在其中的一場比賽中,該運(yùn)動(dòng)員3分球共出手20次,小亮說,該運(yùn)動(dòng)員這場比賽中一定投中了5個(gè)3分球,你認(rèn)為小亮的說法正確嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:關(guān)于x的方程x2-2m1xm2=0.

1)當(dāng)m取何值時(shí),方程有兩個(gè)實(shí)數(shù)根?

2)為m選取一個(gè)合適的整數(shù),使方程有兩個(gè)不相等的實(shí)數(shù)根,并求這兩個(gè)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和同桌小聰在課后復(fù)習(xí)時(shí),對(duì)練習(xí)冊(cè)目標(biāo)與評(píng)定中的一道思考題,進(jìn)行了認(rèn)真地探索.

(思考題)如圖,一架2.5米長的梯子AB斜靠在豎直的墻AC上,這時(shí)B到墻C的距離為0.7米,如果梯子的頂端沿墻下滑0.4米,那么點(diǎn)B將向外移動(dòng)多少米?

(1)請(qǐng)你將小明對(duì)思考題的解答補(bǔ)充完整:

解:設(shè)點(diǎn)B將向外移動(dòng)x米,即BB1=x,

A1B1=2.5,在RtA1B1C中,由B1C2+A1C2=A1B12,

得方程___________________,解方程,得x1=____,x2=______________,∴點(diǎn)B將向外移動(dòng)____米.

(2)解完思考題后,小聰提出了如下兩個(gè)問題:

(問題一)在思考題中,將下滑0.4改為下滑0.9,那么該題的答案會(huì)是0.9米嗎?為什么?

(問題二)在思考題中,梯子的頂端從A處沿墻AC下滑的距離與點(diǎn)B向外移動(dòng)的距離,有可能相等嗎?為什么?

請(qǐng)你解答小聰提出的這兩個(gè)問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】要在一塊長52 m,寬48 m的矩形綠地上,修建同樣寬的兩條互相垂直的甬路,下面分別是小亮和小穎的設(shè)計(jì)方案.

小亮設(shè)計(jì)的方案如圖①所示,甬路寬度均為x m,剩余的四塊綠地面積共2300 m2.

小穎設(shè)計(jì)的方案如圖②所示,BC=HE=x,ABCD,HGEF,ABEF,1=60°.

(1)求小亮設(shè)計(jì)方案中甬路的寬度x;

(2)求小穎設(shè)計(jì)方案中四塊綠地的總面積.(友情提示:小穎設(shè)計(jì)方案中的x與小亮設(shè)計(jì)方案中的x取值相同)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,∠ABC=90°,AB=BC,三角形的頂點(diǎn)在相互平行的三條直線a、bc上,且a、b之間的距離為1,b、c之間的距離為2,則AC2=(  )

A.13B.20C.25D.26

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八個(gè)邊長為1的正方形如圖擺放在平面直角坐標(biāo)系中,經(jīng)過原點(diǎn)的一條直線將這八個(gè)正方形分成面積相等的兩部分,則該直線的解析式為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案