正方形ABCD中,點(diǎn)F為正方形ABCD內(nèi)的點(diǎn),△BFC繞著點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)90°后與△BEA重合.
(1)如圖1,若正方形ABCD的邊長(zhǎng)為2,BE=1,F(xiàn)C=數(shù)學(xué)公式,求證:AE∥BF;
(2)如圖2,若點(diǎn)F為正方形ABCD對(duì)角線AC上的點(diǎn),且AF:FC=3:1,BC=2,求BF的長(zhǎng).

解:(1)證明:∵△BFC繞著點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)90°后與△BEA重合
∴BE=BF=1,∠EBF=∠ABC=90°,∠AEB=∠BFC
在△BFC中,
,
BC2=22=4
∴BF2+FC2=BC2
∴∠BFC=90°…
∴∠AEB+∠EBF=180°
∴AE∥BF…
(2)解:∵Rt△ABC中,AB=BC=2,由勾股定理,得
AC==2
∵AF:FC=3:1,
∴AF=AC=,F(xiàn)C=AC=
∵△BFC繞著點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)90°后與△BEA重合
∴∠EAB=∠FCB,BE=BF,
∵四邊形ABCD是正方形
∴∠ABC=90°
∴∠BAC+∠ACB=90°
∴∠EAB+∠BAC=90°
即∠EAF=90°
在Rt△EAF中,,
在Rt△EBF中,EF2=BE2+BF2
∵BE=BF

分析:(1)由條件可以得出△BFE是直角三角形,就有∠BFC=90°,由旋轉(zhuǎn)可得∠EBF=∠AEB=90°,就有∴∠AEB+∠EBF=180°,從而得出結(jié)論.
(2)在正方形中根據(jù)勾股定理可以求出AC,由AF:FC=3:1可以求出AF、CF的長(zhǎng).由旋轉(zhuǎn)可以求出AE=CF,BE=BF,∠BEF=90°,△AEF是直角三角形,從而求出EF的長(zhǎng).進(jìn)而由勾股定理可以求出BF的值.
點(diǎn)評(píng):本題考查了正方形的性質(zhì),勾股定理、勾股定理的逆定理的運(yùn)用,旋轉(zhuǎn)的性質(zhì),平行線的判定,在解答的過(guò)程中要注意旋轉(zhuǎn)過(guò)程中的不變量的運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、已知正方形ABCD中,點(diǎn)E在邊DC上,DE=2,EC=1(如圖所示)把線段AE繞點(diǎn)A旋轉(zhuǎn),使點(diǎn)E落在直線BC上的點(diǎn)F處,則F、C兩點(diǎn)的距離為
1或5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在正方形ABCD中,點(diǎn)E,F(xiàn)分別在邊BC,CD上,如果AE=4,EF=3,AF=5,那么正方形ABCD的面積等于
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在邊長(zhǎng)為8的正方形ABCD中,點(diǎn)O為AD上一動(dòng)點(diǎn)(4<OA<8),以O(shè)為圓心精英家教網(wǎng),OA的長(zhǎng)為半徑的圓交邊CD于點(diǎn)M,連接OM,過(guò)點(diǎn)M作⊙O的切線交邊BC于N.
(1)求證:△ODM∽△MCN;
(2)設(shè)DM=x,求OA的長(zhǎng)(用含x的代數(shù)式表示);
(3)在點(diǎn)O的運(yùn)動(dòng)過(guò)程中,設(shè)△CMN的周長(zhǎng)為P,試用含x的代數(shù)式表示P,你能發(fā)現(xiàn)怎樣的結(jié)論?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖①,正方形ABCD中,點(diǎn)A、B的坐標(biāo)分別為(0,12),(8,6),點(diǎn)C在第一象限.動(dòng)點(diǎn)P在正方形ABCD的邊上,從點(diǎn)A出發(fā)沿A→B→C→D勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)(1,0)出發(fā),以相同速度沿x軸正方向運(yùn)動(dòng),當(dāng)P點(diǎn)到D點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
(1)正方形邊長(zhǎng)
 
,頂點(diǎn)C的坐標(biāo)
 

(2)當(dāng)P點(diǎn)在邊AB上運(yùn)動(dòng)時(shí),△OPQ的面積S與運(yùn)動(dòng)時(shí)間t(秒)的函數(shù)圖象是如圖②所示的拋物線的一部分,求點(diǎn)P,Q運(yùn)動(dòng)速度;
(3)求在(2)中當(dāng)t為何值時(shí),△OPQ的面積最大,并求此時(shí)P點(diǎn)的坐標(biāo);
(4)如果點(diǎn)P、Q保持原速度速度不變,當(dāng)點(diǎn)P沿A?B?C?D勻速運(yùn)動(dòng)時(shí),OP與PQ能否相等,若能,直接寫(xiě)出所有符合條件的t的值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察本題的三個(gè)圖形,思考下列問(wèn)題
(1)如圖1,正方形ABCD中,點(diǎn)M是CD上異于端點(diǎn)的任意一點(diǎn),過(guò)點(diǎn)C作CN⊥BM于O,且交AD于N點(diǎn).求證:BM=CN;
(2)如圖2,等邊△ABC中,點(diǎn)M是CA上異于端點(diǎn)的任意一點(diǎn),過(guò)點(diǎn)C作射線CN交AB于點(diǎn)N、交BM于點(diǎn)O,且使∠BOC=120°.
請(qǐng)你判斷此時(shí)BM與CN的大小關(guān)系,并證明你的結(jié)論.
(3)如圖3,正n邊形ABCDE…An中,點(diǎn)M是CD上異于端點(diǎn)的任意一點(diǎn),過(guò)點(diǎn)C作射線CN交DE于點(diǎn)N、交BM于點(diǎn)O,且使BM=CN.設(shè)此時(shí)∠BOC的大小為y,請(qǐng)你寫(xiě)出y與n之間的函數(shù)關(guān)系式.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案