【題目】邊長為a的等邊三角形,記為第1個等邊三角形,取其各邊的三等分點,順次連接得到一個正六邊形,記為第1個正六邊形,取這個正六邊形不相鄰的三邊中點,順次連接又得到一個等邊三角形,記為第2個等邊三角形,取其各邊的三等分點,順次連接又得到一個正六邊形,記為第2個正六邊形(如圖),…,按此方式依次操作,則第6個正六邊形的邊長為( )
A. B. C. D.
【答案】A
【解析】
連接AD、DB、DF,求出∠AFD=∠ABD=90°,根據(jù)HL證兩三角形全等得出∠FAD=60°,求出AD∥EF∥GI,過F作FZ⊥GI,過E作EN⊥GI于N,得出平行四邊形FZNE得出EF=ZN=a,求出GI的長,求出第一個正六邊形的邊長是a,是等邊三角形QKM的邊長的;同理第二個正六邊形的邊長是等邊三角形GHI的邊長的;求出第五個等邊三角形的邊長,乘以即可得出第六個正六邊形的邊長.
連接AD、DF、DB.
∵六邊形ABCDEF是正六邊形,
∴∠ABC=∠BAF=∠AFE,AB=AF,∠E=∠C=120°,EF=DE=BC=CD,
∴∠EFD=∠EDF=∠CBD=∠BDC=30°,
∵∠AFE=∠ABC=120°,
∴∠AFD=∠ABD=90°,
在Rt△ABD和RtAFD中
∴Rt△ABD≌Rt△AFD(HL),
∴∠BAD=∠FAD=×120°=60°,
∴∠FAD+∠AFE=60°+120°=180°,
∴AD∥EF,
∵G、I分別為AF、DE中點,
∴GI∥EF∥AD,
∴∠FGI=∠FAD=60°,
∵六邊形ABCDEF是正六邊形,△QKM是等邊三角形,
∴∠EDM=60°=∠M,
∴ED=EM,
同理AF=QF,
即AF=QF=EF=EM,
∵等邊三角形QKM的邊長是a,
∴第一個正六邊形ABCDEF的邊長是a,即等邊三角形QKM的邊長的,
過F作FZ⊥GI于Z,過E作EN⊥GI于N,
則FZ∥EN,
∵EF∥GI,
∴四邊形FZNE是平行四邊形,
∴EF=ZN=a,
∵GF=AF=×a=a,∠FGI=60°(已證),
∴∠GFZ=30°,
∴GZ=GF=a,
同理IN=a,
∴GI=a+a+a=a,即第二個等邊三角形的邊長是a,與上面求出的第一個正六邊形的邊長的方法類似,可求出第二個正六邊形的邊長是×a;
同理第第三個等邊三角形的邊長是×a,與上面求出的第一個正六邊形的邊長的方法類似,可求出第三個正六邊形的邊長是××a;
同理第四個等邊三角形的邊長是××a,第四個正六邊形的邊長是×××a;
第五個等邊三角形的邊長是×××a,第五個正六邊形的邊長是××××a;
第六個等邊三角形的邊長是××××a,第六個正六邊形的邊長是×××××a,
即第六個正六邊形的邊長是×a,
故選A.
科目:初中數(shù)學 來源: 題型:
【題目】某商場經(jīng)營某種品牌的玩具,進價是20元,根據(jù)市場調(diào)查:在一段時間內(nèi),銷售單價是30元時,銷售量是500件,而銷售單價每漲1元,就會少售出10件玩具.
(1)不妨設(shè)該種品牌玩具的銷售單價為x元(x>30),請你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲得利潤w元,并把結(jié)果填寫在表格中:
銷售單價(元) | x |
銷售量y(件) | |
銷售玩具獲得利潤w(元) |
(2)在(1)問條件下,若商場獲得了8000元銷售利潤,求該玩具銷售單價x應(yīng)定為多少元.
(3)在(1)問條件下,若玩具廠規(guī)定該品牌玩具銷售單價不低于35元,且商場要完成不少于350件的銷售任務(wù),求商場銷售該品牌玩具獲得的最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1正方形ABCD中,E、F、G、H分別是AB、BC、CD、DA上的點,3AE=EB,有一只螞蟻從E點出發(fā),經(jīng)過F、G、H,最后回點E點,則螞蟻所走的最小路程是( )
A.2B.4C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學興趣小組設(shè)計了“你最喜歡的溝通方式”調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機調(diào)查了部分學生,將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:
(1)這次統(tǒng)計共抽查了 名學生;在扇形統(tǒng)計圖中,表示“QQ”的扇形圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計圖補充完整;
(3)該校共有1500名學生,請估計該校最喜歡用“微信”進行溝通的學生有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解:
我們知道:一條線段有兩個端點,線段和線段表示同一條線段. 若在直線上取了三個不同的點,則以它們?yōu)槎它c的線段共有 條;若取了四個不同的點,則共有線段 條;…;依此類推,取了個不同的點,共有線段條.(用含的代數(shù)式表示)
類比探究:
以一個銳角的頂點為端點向這個角的內(nèi)部引射線.
(1)若引出兩條射線,則所得圖形中共有 個銳角;
(2)若引出條射線,則所得圖形中共有 個銳角.(用含的代數(shù)式表示)
拓展應(yīng)用:
一條鐵路上共有8個火車站,若一列火車往返過程中必須停靠每個車站,則鐵路局需為這條線路準備多少種車票?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,半徑為1cm的⊙O中,AB為⊙O內(nèi)接正九邊形的一邊,點C、D分別在優(yōu)弧與劣弧上.則下列結(jié)論:①S扇形AOB= πcm2;② ;③∠ACB=20°;④∠ADB=140°.錯誤的有( )
A.0個
B.1個
C.2個
D.3個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,D,E分別是AC,AB上的點,BD與CE交于點O.給出下列三個條件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.上述三個條件中,哪兩個條件可判定△ABC是等腰三角形(用序號寫出一種情形):_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】張師傅駕車從甲地去乙地,途中在加油站加了一次油,加油時,車載電腦顯示還能行駛50千米.假設(shè)加油前、后汽車都以100千米/小時的速度勻速行駛,已知油箱中剩余油量y(升)與行駛時間t(小時)之間的關(guān)系如圖所示.
(1)求張師傅加油前油箱剩余油量y(升)與行駛時間t(小時)之間的關(guān)系式;
(2)求出a的值;
(3)求張師傅途中加油多少升?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工程隊修建一條長1200 m的道路,采用新的施工方式,工效提升了50%,結(jié)果提前4天完成任務(wù).
(1)求這個工程隊原計劃每天修道路多少米?
(2)在這項工程中,如果要求工程隊提前2天完成任務(wù),那么實際平均每天修建道路的工效比原計劃增加百分之幾?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com