【題目】如圖,∠BAC=90°,BD⊥DE,CE⊥DE,添加下列條件后仍不能使△ABD≌△CAE的條件是( )
A.AD=AE
B.AB=AC
C.BD=AE
D.AD=CE
【答案】A
【解析】∵∠BAC=90°,BD⊥DE,CE⊥DE,∴∠D=∠E=∠BAC=90°,
∴∠B+∠BAD=90°,∠BAD+∠CAE=90°,∴∠B=∠CAE,
A、AD和AE不是對(duì)應(yīng)邊,即不能判斷△ABD≌△CAE,故本選項(xiàng)符合題意;
B、在△ABD和△CAE中
,
∴△ABD≌△CAE(AAS),故本選項(xiàng)不符合題意;
C、在△ABD和△CAE中
,
∴△ABD≌△CAE(AAS),故本選項(xiàng)不符合題意;
D、在△ABD和△CAE中
,
∴△ABD≌△CAE(AAS),故本選項(xiàng)不符合題意;
所以答案是:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在矩形ABCD中,∠ADC的平分線DE與BC邊所在的直線交于點(diǎn)E,點(diǎn)P是線段DE上一定點(diǎn)(其中EP<PD)
(1)如圖1,若點(diǎn)F在CD邊上(不與D重合),將∠DPF繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°后,角的兩邊PD、PF分別交射線DA于點(diǎn)H、G.
①求證:PG=PF;
②探究:DF、DG、DP之間有怎樣的數(shù)量關(guān)系,并證明你的結(jié)論.
(2)拓展:如圖2,若點(diǎn)F在CD的延長(zhǎng)線上(不與D重合),過點(diǎn)P作PG⊥PF,交射線DA于點(diǎn)G,你認(rèn)為(1)中DE、DG、DP之間的數(shù)量關(guān)系是否仍然成立?若成立,給出證明;若不成立,請(qǐng)寫出它們所滿足的數(shù)量關(guān)系式,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在開展“愛心捐助”的活動(dòng)中,初三一班六名同學(xué)捐款的數(shù)額分別為:8,10,10,4,8,10(單位:元),這組數(shù)據(jù)的眾數(shù)是( )
A.10
B.9
C.8
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了加強(qiáng)學(xué)生的安全意識(shí),某校組織了學(xué)生參加安全知識(shí)競(jìng)賽.從中抽取了部分學(xué)生成績(jī)(得分?jǐn)?shù)取正整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),繪制統(tǒng)計(jì)頻數(shù)分布直方圖(未完成)和扇形圖如下,請(qǐng)解答下列問題:
(1)A組的頻數(shù)a比B組的頻數(shù)b小24,樣本容量 , a為:
(2)n為°,E組所占比例為%:
(3)補(bǔ)全頻數(shù)分布直方圖;
(4)若成績(jī)?cè)?0分以上優(yōu)秀,全校共有2000名學(xué)生,估計(jì)成績(jī)優(yōu)秀學(xué)生有名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校把學(xué)生的筆試成績(jī)、實(shí)踐能力和成長(zhǎng)記錄三項(xiàng)成績(jī)分別按50%、20%和30%的比例計(jì)入學(xué)期總評(píng)成績(jī),90分以上為優(yōu)秀.甲、乙、丙三人的各項(xiàng)成績(jī)(單位:分)記錄如下,學(xué)期總評(píng)成績(jī)優(yōu)秀的學(xué)生是__________.
筆試成績(jī) | 實(shí)踐能力 | 成長(zhǎng)記錄 | |
甲 | 90 | 83 | 95 |
乙 | 88 | 90 | 95 |
丙 | 90 | 88 | 90 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的方程x2+6x+k=0有兩個(gè)相等的實(shí)數(shù)根,則k的值為( )
A. 0 B. -9 C. 9 D. -6
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com