【題目】如圖,在Rt△ABC中,∠BAC=90°,∠C=30°,以邊上AC上一點(diǎn)O為圓心,OA為半徑作⊙O,⊙O恰好經(jīng)過(guò)邊BC的中點(diǎn)D,并與邊AC相交于另一點(diǎn)F.
(1)求證:BD是⊙O的切線.
(2)若AB=,E是半圓上一動(dòng)點(diǎn),連接AE,AD,DE.
填空:
①當(dāng)的長(zhǎng)度是 時(shí),四邊形ABDE是菱形;
②當(dāng)的長(zhǎng)度是 時(shí),△ADE是直角三角.
【答案】(1)證明見(jiàn)解析;(2)①π;②π或π.
【解析】試題分析:(1)首先連接OD,由在Rt△ABC中,∠BAC=90°,∠C=30°,⊙O恰好經(jīng)過(guò)邊BC的中點(diǎn)D,易得AB=BD,繼而證得∠ODB=∠BAC=90°,即可證得結(jié)論;
(2)①易得當(dāng)DE⊥AC時(shí),四邊形ABDE是菱形,然后求得∠AOE的度數(shù),半徑OD的長(zhǎng),則可求得答案;
②分別從∠ADE=90°,∠DAE=90°,∠AED=90°去分析求解即可求得答案.
試題解析:(1)證明:如圖1,連接OD,
∵在Rt△ABC中,∠BAC=90°,∠C=30°,
∴AB=BC,
∵D是BC的中點(diǎn),
∴BD=BC,
∴AB=BD,
∴∠BAD=∠BDA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠ODB=∠BAO=90°,
即OD⊥BC,
∴BD是⊙O的切線.
(2)①當(dāng)DE⊥AC時(shí),四邊形ABDE是菱形;
如圖2,設(shè)DE交AC于點(diǎn)M,連接OE,則DE=2DM,
∵∠C=30°,
∴CD=2DM,∴DE=CD=AB=BC,
∵∠BAC=90°,
∴DE∥AB,
∴四邊形ABDE是平行四邊形,
∵AB=BD,
∴四邊形ABDE是菱形;
∵AD=BD=AB=CD=BC=,
∴△ABD是等邊三角形,OD=CDtan30°=1,
∴∠ADB=60°,
∵∠CDE=90°﹣∠C=60°,
∴∠ADE=180°﹣∠ADB﹣∠CDE=60°,
∴∠AOE=2∠ADE=120°,
∴的長(zhǎng)度為: = ;
故答案為: ;
②若∠ADE=90°,則點(diǎn)E與點(diǎn)F重合,此時(shí)的長(zhǎng)度為: =π;
若∠DAE=90°,則DE是直徑,則∠AOE=2∠ADO=60°,此時(shí)的長(zhǎng)度為:
∵AD不是直徑,
∴∠AED≠90°;
綜上可得:當(dāng)的長(zhǎng)度是π或π時(shí),△ADE是直角三角形.
故答案為: π或π.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)購(gòu)進(jìn)一種每件價(jià)格為100元的新商品,在商場(chǎng)試銷(xiāo)發(fā)現(xiàn):銷(xiāo)售單價(jià)x(元/件)與每天銷(xiāo)售量y(件)之間滿足如圖所示的關(guān)系:
(1)求出y與x之間的函數(shù)關(guān)系式;
(2)寫(xiě)出每天的利潤(rùn)W與銷(xiāo)售單價(jià)x之間的函數(shù)關(guān)系式;若你是商場(chǎng)負(fù)責(zé)人,會(huì)將售價(jià)定為多少,來(lái)保證每天獲得的利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在凸多邊形中, 四邊形有2條對(duì)角線, 五邊形有5條對(duì)角線, 經(jīng)過(guò)觀察、探索、歸納, 你認(rèn)為凸八邊形的對(duì)角線條數(shù)應(yīng)該是多少條? 簡(jiǎn)單扼要地寫(xiě)出你的思考過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,AB=AC,∠BAC=90°,O為BC的中點(diǎn)。
(1)寫(xiě)出點(diǎn)O到△ABC的三個(gè)頂點(diǎn)A、B、C的距離的大小關(guān)系并說(shuō)明理由;
(2)如果點(diǎn)M、N分別在線段AB、AC上移動(dòng),在移動(dòng)中保持AN=BM,請(qǐng)判斷△OMN的形狀,并證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的方程5x-2a+4=3x的解是負(fù)數(shù),則a的取值范圍是 ______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A的坐標(biāo)為(1,3-a),若點(diǎn)A到x軸的距離是3 ,則a=( )
A. 6B. 0C. ±6D. 0或6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A坐標(biāo)為(6,0),點(diǎn)B在y軸的正半軸上,且 =24 ,
(1)求點(diǎn)B坐標(biāo);
(2)若點(diǎn)P從B出發(fā)沿y軸負(fù)半軸方向運(yùn)動(dòng),速度每秒2個(gè)單位,運(yùn)動(dòng)時(shí)間t秒,△AOP的面積為S,求S與t的關(guān)系式,并直接寫(xiě)出t的取值范圍;
(3)在(2)的條件下,若S△AOP:S△ABP=1:3,且S△AOP+S△ABP=S△AOB,在線段AB的垂直平分線上是否存在點(diǎn)Q,使得△AOQ的面積與△BPQ的面積相等?若存在,求出Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】愛(ài)好思考的小茜在探究?jī)蓷l直線的位置關(guān)系查閱資料時(shí),發(fā)現(xiàn)了“中垂三角形”,即兩條中線互相垂直的三角形稱(chēng)為“中垂三角形”.如圖(1)、圖(2)、圖(3)中,AM、BN是△ABC的中線,AM⊥BN于點(diǎn)P,像△ABC這樣的三角形均為“中垂三角形”.設(shè)BC=a,AC=b,AB=c.
【特例探究】
(1)如圖1,當(dāng)tan∠PAB=1,c=4時(shí),a= ,b= ;
如圖2,當(dāng)∠PAB=30°,c=2時(shí),a= ,b= ;
【歸納證明】
(2)請(qǐng)你觀察(1)中的計(jì)算結(jié)果,猜想a2、b2、c2三者之間的關(guān)系,用等式表示出來(lái),并利用圖3證明你的結(jié)論.
【拓展證明】
(3)如圖4,ABCD中,E、F分別是AD、BC的三等分點(diǎn),且AD=3AE,BC=3BF,連接AF、BE、CE,且BE⊥CE于E,AF與BE相交點(diǎn)G,AD=3,AB=3,求AF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com