【題目】如圖中,平分于點(diǎn),在上截取,過點(diǎn)于點(diǎn).求證:四邊形是菱形;

如圖,中,平分的外角的延長線于點(diǎn),在的延長線上截取,過點(diǎn)的延長線于點(diǎn).四邊形還是菱形嗎?如果是,請證明;如果不是,請說明理由.

【答案】(1)證明見解析;(2)四邊形是菱形,理由見解析.

【解析】

(1)直接由SAS得出ADE≌△ADC,進(jìn)而得出DE=DC,ADE=ADC.再由SAS證明AFE≌△AFC,得出EF=CF.由EFBC得出∠EFD=ADC,從而∠EFD=ADE,根據(jù)等角對等邊得出DE=EF,從而DE=EF=CF=DC,由菱形的判定可知四邊形CDEF是菱形.
(2)首先由SAS證出ADE≌△ADC,AFE≌△AFC,得出DE=DC,ADE=ADC,EF=CF.然后由EFBC,得出∠EFD=ADC,從而∠EFD=ADE,根據(jù)等邊對等角得出DE=EF,則DE=EF=CF=DC,由菱形的判定可知四邊形CDEF是菱形.

證明:在中,

;

同理,

,

,

,

,

∴四邊形是菱形.

解:四邊形是菱形.理由如下:

中,

,

,

同理,

,

,

,

,

,

∴四邊形是菱形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、D、F、B在同一直線上,AD=BF,AE=BC,且AE∥BC.

求證:(1)EF=CD;(2)EF∥CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC是等邊三角形,點(diǎn)D,E分別在直線BCAC.

(1)如圖1,當(dāng)BD=CE時,連接ADBE交于點(diǎn)P,則線段ADBE的數(shù)量關(guān)系是____________;APE的度數(shù)是_______________;

(2)如圖2,若“BD=CE”不變,ADEB的延長線交于點(diǎn)P,那么(1)中的兩個結(jié)論是否仍然成立?請說明理由.

(3)如圖3,若AE=BD,連接DEAB邊交于點(diǎn)M,求證:點(diǎn)MDE的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一架方梯長25米,如圖,斜靠在一面墻上,梯子底端離墻7米.

1)這個梯子的頂端距地面有多高?

2)如果梯子的頂端下滑了4米,那么梯子的底端在水平方向滑動了幾米?

3)當(dāng)梯子的頂端下滑的距離與梯子的底端水平滑動的距離相等時,這時梯子的頂端距地面有多高?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,正方形的邊長為,,分別平分正方形的兩個外角,且滿足,連接,,

求證:

的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線x軸交于點(diǎn)A,與直線交于點(diǎn)B

1)求點(diǎn)AB兩點(diǎn)的坐標(biāo);

2)直接寫出y1y2x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,邊上的一動點(diǎn)(點(diǎn)不與兩點(diǎn)重合).點(diǎn),點(diǎn).

下列條件中:①;的中線;③的角平分線;④的高,請選擇一個滿足的條件,使得四邊形為菱形,并證明;

答:我選擇________.(填序號)

選擇的條件下,再滿足條件:________,四邊形即成為正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平分,且交于點(diǎn)平分,且交于點(diǎn)相交于點(diǎn),連接

的度數(shù);

求證:四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,ACADBCBE,∠ACB100°,則∠ECD=(  )

A.20°B.30°C.40°D.50°

查看答案和解析>>

同步練習(xí)冊答案