【題目】完成下列各題:

(1)三根垂直地面的木桿甲、乙、丙,在路燈下乙、丙的影子如圖1所示.試確定路燈燈泡的位置,再作出甲的影子.(不寫作法,保留作圖痕跡)

(2)如圖2,在平行四邊形ABCD中,點(diǎn)EF分別在AB,CD上,AECF.求證:DEBF.

【答案】(1)見解析;(2)證明見解析.

【解析】

1)首先利用乙、丙的影子得出光源的位置,進(jìn)而得出甲的影子;

2)利用平行四邊形的性質(zhì)得出CD=AB,CDAB,進(jìn)而得出四邊形DEBF是平行四邊形即可得出答案.

(1)如圖所示:AB即為甲的影子;

(2)證明 ∵在平行四邊形ABCD中,

CDAB,CDAB,

AECF

DFBE,

又∵CDAB

∴四邊形DEBF是平行四邊形,

DEBF.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+ca≠0)的對(duì)稱軸為直線x=﹣2,與x軸的一個(gè)交點(diǎn)在(﹣3,0)和(﹣4,0)之間,其部分圖象如圖所示,則下列結(jié)論:①4ab0;②c0;③﹣3b+4c0;④4a2bat2+btt為實(shí)數(shù));⑤點(diǎn)(﹣y1),(﹣,y2),(﹣,y3)是該拋物線上的點(diǎn),則y1y2y3,其中正確的結(jié)論有( 。

A. ②④ B. ①③④⑤ C. ①②③⑤ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具店購進(jìn)一批紀(jì)念冊,每本進(jìn)價(jià)為20元,出于營銷考慮,要求每本紀(jì)念冊的售價(jià)不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀(jì)念冊每周的銷售量y(本)與每本紀(jì)念冊的售價(jià)x(元)之間滿足一次函數(shù)關(guān)系:當(dāng)銷售單價(jià)為22元時(shí),銷售量為36本;當(dāng)銷售單價(jià)為24元時(shí),銷售量為32本.

(1)求出y與x的函數(shù)關(guān)系式;

(2)當(dāng)文具店每周銷售這種紀(jì)念冊獲得150元的利潤時(shí),每本紀(jì)念冊的銷售單價(jià)是多少元?

(3)設(shè)該文具店每周銷售這種紀(jì)念冊所獲得的利潤為w元,將該紀(jì)念冊銷售單價(jià)定為多少元時(shí),才能使文具店銷售該紀(jì)念冊所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的邊OAy軸的正半軸上,Cx軸的正半軸上,已知A(0,8)、C(10,0),作∠AOC的平分線交AB于點(diǎn)D,連接CD,過點(diǎn)DDECDOA于點(diǎn)E

(1)求點(diǎn)D的坐標(biāo);

(2)求證:△ADE≌△BCD;

(3)拋物線yx2x+8經(jīng)過點(diǎn)A、C,連接AC.探索:若點(diǎn)Px軸下方拋物線上一動(dòng)點(diǎn),過點(diǎn)P作平行于y軸的直線交AC于點(diǎn)M.是否存在點(diǎn)P,使線段MP的長度有最大值?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)興趣小組,利用樹影測量樹高,如圖(1),已測出樹AB的影長AC12米,并測出此時(shí)太陽光線與地面成30°夾角.

1)求出樹高AB;

2)因水土流失,此時(shí)樹AB沿太陽光線方向倒下,在傾倒過程中,樹影長度發(fā)生了變化,假設(shè)太陽光線與地面夾角保持不變.求樹的最大影長.(用圖(2)解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】要使關(guān)于x的方程有兩個(gè)實(shí)數(shù)根,且使關(guān)于x的分式方程的解為非負(fù)數(shù)的所有整數(shù)a的個(gè)數(shù)為  

A. 3個(gè)B. 4個(gè)C. 5個(gè)D. 6個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+5x+n經(jīng)過點(diǎn)A(10),與y軸交于點(diǎn)B

(1)求拋物線的解析式;

(2)Py軸正半軸上一點(diǎn),且△PAB是以AB為腰的等腰三角形,試求P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識(shí),求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB,

∴∠COE=CAD,EOD=ODA,

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB的直徑,點(diǎn)C、D上,且AD平分,過點(diǎn)DAC的垂線,與AC的延長線相交于E,與AB的延長線相交于點(diǎn)F,GAB的下半圓弧的中點(diǎn),DGABH,連接DB、GB

證明EF的切線;

求證:

已知圓的半徑,,求GH的長.

查看答案和解析>>

同步練習(xí)冊答案