【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點E在CD上,將△BCE沿BE折疊,點C恰落在邊AD上的點F處;點G在AF上,將△ABG沿BG折疊,點A恰落在線段BF上的點H處,有下列結(jié)論:①∠EBG=45°;②AG+DF=FG;③△DEF∽△ABG;④S△ABG= S△FGH.其中正確的是( 。
A. 1個 B. 2個 C. 3個 D. 4個
【答案】C
【解析】試題分析:利用折疊性質(zhì)得∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,則可得到∠EBG=∠ABC,于是可對①進行判斷;在Rt△ABF中利用勾股定理計算出AF=8,則DF=AD﹣AF=2,設(shè)AG=x,則GH=x,GF=8﹣x,HF=BF﹣BH=4,利用勾股定理得到x2+42=(8﹣x)2,解得x=3,所以AG=3,GF=5,于是可對②進行判斷;接著證明△ABF∽△DFE,利用相似比得到,而,所以,所以△DEF與△ABG不相似,于是可對③進行判斷;分別計算S△ABG和S△GHF可對④進行判斷.
解:∵△BCE沿BE折疊,點C恰落在邊AD上的點F處;點G在AF上,
將△ABG沿BG折疊,點A恰落在線段BF上的點H處,
∴∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,
∴∠EBG=∠EBF+∠FBG=∠CBF+∠ABF=∠ABC=45°,所以①正確;
在Rt△ABF中,AF==8,
∴DF=AD﹣AF=10﹣8=2,
設(shè)AG=x,則GH=x,GF=8﹣x,HF=BF﹣BH=10﹣6=4,
在Rt△GFH中,∵GH2+HF2=GF2,
∴x2+42=(8﹣x)2,解得x=3,
∴GF=5,
∴AG+DF=FG=5,所以②正確;
∵△BCE沿BE折疊,點C恰落在邊AD上的點F處
∴∠BFE=∠C=90°,
∴∠EFD+∠AFB=90°,
而∠AFB+∠ABF=90°,
∴∠ABF=∠EFD,
∴△ABF∽△DFE,
∴ ,
∴,
而,
∴,
∴△DEF與△ABG不相似;所以③錯誤.
∵S△ABG=×6×3=9,S△GHF=×3×4=6,
∴S△ABG=1.5S△FGH.所以④正確.
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC=26,BC=20,AD是BC邊上的中線,AD=24,F(xiàn)是AD上的動點,E是AC邊上的動點,則CF+EF的最小值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,直線EF分別交兩直角邊AB、BC與E、F兩點,且EF∥AC,P是斜邊AC的中點,連接PE,PF,且AB=,BC=.
(1)當E、F均為兩直角邊的中點時,求證:四邊形EPFB是矩形,并求出此時EF的長;
(2)設(shè)EF的長度為x(x>0),當∠EPF=∠A時,用含x的代數(shù)式表示EP的長;
(3)設(shè)△PEF的面積為S,則當EF為多少時,S有最大值,并求出該最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O直徑,BC為⊙O切線,連接A、C兩點,交⊙O于點D,BE=CE,連接DE,OE.
(1)判斷DE與⊙O的位置關(guān)系,并說明理由;
(2)求證:BC2=CD2OE;
(3)若cos∠BAD=,BE=6,求OE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某次考試中,某班級的數(shù)學成績統(tǒng)計圖如下.下列說法錯誤的是( )
A.得分在70~80分之間的人數(shù)最多
B.該班的總?cè)藬?shù)為40
C.得分在90~100分之間的人數(shù)最少
D.及格(≥60分)人數(shù)是26
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列運動屬于平移的是( 。
A. 小朋友蕩秋千B. 自行車在行進中車輪的運動
C. 地球繞著太陽轉(zhuǎn)D. 小華乘手扶電梯從一樓到二樓
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,若∠B=60°,點E、F分別在AB、AD上,且BE=AF,則∠AEC+∠AFC的度數(shù)等于( )
A.120°
B.140°
C.160°
D.180°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com