已知M是Rt△ABC中斜邊BC的中點,P、Q分別在AB、AC上,且PM⊥QM.求證:PQ2=PB2+QC2.
證明:如圖,以M點為中心,△MCQ順時針旋轉(zhuǎn)180°至△MBN,
∴△MCQ≌△MBN,
∴BN=QC,MN=MQ,∠MBN=∠C,
連接PN,∵PM⊥QM,
∴PM垂直平分NQ,
∴PN=PQ,
∵△ABC是直角三角形,BC是斜邊,
∴∠ABC+∠C=90°,
∴∠ABC+∠MBN=90°,
即△PBN是直角三角形,
根據(jù)勾股定理可得,PN
2=PB
2+BN
2,
∴PQ
2=PB
2+QC
2.
分析:以M點為中心,△MCQ順時針旋轉(zhuǎn)180°至△MBN,根據(jù)旋轉(zhuǎn)的旋轉(zhuǎn)可得△MCQ與△MBN全等,根據(jù)全等三角形對應(yīng)邊相等可得BN=QC,MN=MQ,全等三角形對應(yīng)角相等可得,∠MBN=∠C,再連接PN,可以證明PM垂直平分NQ,所以PN=PQ,然后證明△PBN為直角三角形,根據(jù)勾股定理即可證明.
點評:本題考查了直角三角形的旋轉(zhuǎn),旋轉(zhuǎn)變換的旋轉(zhuǎn),勾股定理的應(yīng)用,利用旋轉(zhuǎn)變換把構(gòu)造出以PQ、PB、QC轉(zhuǎn)化為同一個直角三角形的三邊是證明的關(guān)鍵.