用配方法解關(guān)于x的方程:ax2+bx+c=0(a≠0).

解:∵a≠0,
∴兩邊同時(shí)除以a得:x2+x+=0,
x2+x=-,
x2+x+=-,
=,
∵a≠0,
∴4a2>0,
當(dāng)b2-4ac≥0時(shí),兩邊直接開平方有:
x+,
x=-±,
∴x1=,x2=
分析:把二次項(xiàng)系數(shù)化為1,常數(shù)項(xiàng)移到右邊,兩邊加上一次項(xiàng)系數(shù)一半的平方,左邊配成完全平方的形式,如果右邊的式子為非負(fù)數(shù),就可以兩邊直接開平方求出方程的根.
點(diǎn)評(píng):本題考查的是用配方法解一元二次方程,先把二次項(xiàng)系數(shù)化為1,常數(shù)項(xiàng)移到右邊,兩邊加上一次項(xiàng)系數(shù)一半的平方,把左邊配成完全平方的形式,如果右邊的式子是非負(fù)數(shù),兩邊直接開平方就可以求出方程的根.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

用配方法解關(guān)于x的方程x2+px+q=0時(shí),方程可變形為(  )
A、(x+
p
2
2=
p2-4q
4
B、(x+
p
2
2=
4q-p2
4
C、(x-
p
2
2=
p2-4q
4
D、(x-
p
2
2=
4q-p2
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用配方法解關(guān)于x的方程x2+px+q=0時(shí),此方程可變形為( 。
A、(x+
p
2
)2=
p2
4
B、(x+
p
2
)2=
p2-4q
4
C、(x-
p
2
)2=
p2+4q
4
D、(x-
p
2
)2=
4q-p2
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用配方法解關(guān)于x的方程x2+mx+n=0,此方程可變形為( 。
A、(x+
m
2
)
2
=
4n-m2
4
B、(x+
m
2
)
2
=
m2-4n
4
C、(x+
m
2
)
2
=
m2-4n
2
D、(x+
m
2
)
2
=
4n-m2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用配方法解關(guān)于x的方程x2+bx+c=0,此方程可以變形為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用配方法解關(guān)于x的方程x2+px=q時(shí),應(yīng)在方程兩邊同時(shí)加上( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案