【題目】如圖,在平面直角坐標(biāo)系中,直線與直線相交于點(diǎn) A .
(I)求直線與 x 軸的交點(diǎn)坐標(biāo),并在坐標(biāo)系中標(biāo)出點(diǎn) A 及畫(huà)出直線 的圖象;
(II)若點(diǎn)P是直線在第一象限內(nèi)的一點(diǎn),過(guò)點(diǎn)P作 PQ//y 軸交直線 于點(diǎn)Q,△POQ 的面積等于60 ,試求點(diǎn)P 的橫坐標(biāo).
【答案】(I)見(jiàn)解析;(II) 點(diǎn)的橫坐標(biāo)為12.
【解析】
(I)將直線與直線聯(lián)立方程求解,即可得到點(diǎn)A的坐標(biāo),然后可以在坐標(biāo)系中標(biāo)出點(diǎn)A;求出直線 與x軸的交點(diǎn)B,連接AB即是直線y2.
(II)用x表示出PQ的長(zhǎng)度和Q點(diǎn)的橫坐標(biāo),根據(jù)△POQ 的面積等于60,用等面積法即可求出點(diǎn)Q的橫坐標(biāo).
(I)在中,令,則,解得:,
∴與軸的交點(diǎn)的坐標(biāo)為.
由解得.
所以點(diǎn).
過(guò)、兩點(diǎn)作直線的圖象如圖所示.
(II)∵點(diǎn)是直線在第一象限內(nèi)的一點(diǎn),
∴設(shè)點(diǎn)的坐標(biāo)為,又∥軸,
∴點(diǎn).
∴.
∵,
又的面積等于60,
∴,解得:或(舍去).
∴點(diǎn)的橫坐標(biāo)為12.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年6月上海語(yǔ)文把小學(xué)教材中“外婆”改成“姥姥一事,引起社會(huì)的廣泛關(guān)注和討論,明德集團(tuán)某校文學(xué)社就此召開(kāi)了一次研討會(huì),為了傳承中國(guó)傳統(tǒng)文化,并組織了一次全體學(xué)生“漢字聽(tīng)寫(xiě)”大賽,每位學(xué)生聽(tīng)寫(xiě)漢字39個(gè),隨機(jī)抽取了部分學(xué)生的聽(tīng)寫(xiě)結(jié)果作為樣本進(jìn)行整理,繪制成如下的統(tǒng)計(jì)圖表:
組別 | 正確字?jǐn)?shù)x | 人數(shù) |
A | 0≤x<8 | 10 |
B | 8≤x<16 | 15 |
C | 16≤x<24 | 25 |
D | 24≤x<32 | m |
E | 32≤x<40 | n |
根據(jù)以上信息完成下列問(wèn)題:
(1)求統(tǒng)計(jì)表中的m,n,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)扇形統(tǒng)計(jì)圖中“C組“所對(duì)應(yīng)的圓心角的度數(shù)是多少;
(3)已知該校共有600名學(xué)生,如果聽(tīng)寫(xiě)正確的字的個(gè)數(shù)不少于24個(gè)定為合格,請(qǐng)你估計(jì)該校本次聽(tīng)寫(xiě)比賽合格的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖的矩形ABCD中,E為 的中點(diǎn),有一圓過(guò)C、D、E三點(diǎn),且此圓分別與 、 相交于P、Q兩點(diǎn).甲、乙兩人想找到此圓的圓心O,其作法如下: (甲) 作∠DEC的角平分線L,作 的中垂線,交L于O點(diǎn),則O即為所求;(乙) 連接 、 ,兩線段交于一點(diǎn)O,則O即為所求.
對(duì)于甲、乙兩人的作法,下列判斷何者正確?( )
A.兩人皆正確
B.兩人皆錯(cuò)誤
C.甲正確,乙錯(cuò)誤
D.甲錯(cuò)誤,乙正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于點(diǎn)O,點(diǎn)D、E分別在邊AC、BC上,且AD=CE,連結(jié)DE交CO于點(diǎn)P,給出以下結(jié)論:
①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,則四邊形CEOD的面積為 ;④AD2+BE2﹣2OP2=2DPPE,其中所有正確結(jié)論的序號(hào)是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某校課外體育興趣小組射擊隊(duì)日常訓(xùn)練中,教練為了掌握同學(xué)們一階段以來(lái)的射擊訓(xùn)練情況,對(duì)射擊小組進(jìn)行了射擊測(cè)試,根據(jù)他們某次射擊的測(cè)試數(shù)據(jù)繪制成不完整的條形統(tǒng)計(jì)圖及扇形統(tǒng)計(jì)圖如圖所示:
(I)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(II)填空:該射擊小組共有____個(gè)同學(xué),射擊成績(jī)的眾數(shù)是_____,中位數(shù)是____;
(III)根據(jù)上述數(shù)據(jù),小明同學(xué)說(shuō)“平均成績(jī)與中位數(shù)成績(jī)相同”,試判斷小明的說(shuō)法是否正確?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A、C在雙曲線上,點(diǎn) B、D在雙曲線上,AD// BC//y 軸.
(I)當(dāng)m=6,n=-3,AD=3 時(shí),求此時(shí)點(diǎn) A 的坐標(biāo);
(II)若點(diǎn)A、C關(guān)于原點(diǎn)O對(duì)稱,試判斷四邊形 ABCD的形狀,并說(shuō)明理由;
(III)若AD=3,BC=4,梯形ABCD的面積為,求mn 的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市團(tuán)委舉辦“我的中國(guó)夢(mèng)”為主題的知識(shí)競(jìng)賽,甲、乙兩所學(xué)校參賽人數(shù)相等,比賽結(jié)束后,發(fā)現(xiàn)學(xué)生成績(jī)分別為70分、80分、90分、100分,并根據(jù)統(tǒng)計(jì)數(shù)據(jù)繪制了如下不完整的統(tǒng)計(jì)圖表:
乙校成績(jī)統(tǒng)計(jì)表
分?jǐn)?shù)/分 | 人數(shù)/人 |
70 | 7 |
80 | |
90 | 1 |
100 | 8 |
(1)在圖①中,“80分”所在扇形的圓心角度數(shù)為_(kāi)_______;
(2)請(qǐng)你將圖②補(bǔ)充完整;
(3)求乙校成績(jī)的平均分;
(4)經(jīng)計(jì)算知s甲2=135,s乙2=175,請(qǐng)你根據(jù)這兩個(gè)數(shù)據(jù),對(duì)甲、乙兩校成績(jī)作出合理評(píng)價(jià).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】規(guī)定:logab(a>0,a≠1,b>0)表示a,b之間的一種運(yùn)算.
現(xiàn)有如下的運(yùn)算法則:lognan=n.logNM= (a>0,a≠1,N>0,N≠1,M>0).
例如:log223=3,log25= ,則log1001000=
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】郵遞員騎摩托車從郵局出發(fā),先向東騎行2km到達(dá)A村,繼續(xù)向東騎行3km到達(dá)B村,然后向西騎行9km到C村,最后回到郵局.
(1)以郵局為原點(diǎn),以向東方向?yàn)檎较,?/span>1個(gè)單位長(zhǎng)度表示1km,請(qǐng)你在數(shù)軸上表示出A、B、C三個(gè)村莊的位置;
(2)C村離A村有多遠(yuǎn)?
(3)若摩托車每1km耗油0.03升,這趟路共耗油多少升?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com