【答案】
分析:(1)先證明四邊形AFCE為平行四邊形,再根據(jù)對角線互相垂直平分的平行四邊形是菱形作出判定;根據(jù)勾股定理即可求得AF的長;
(2)①分情況討論可知,當(dāng)P點在BF上、Q點在ED上時,才能構(gòu)成平行四邊形,根據(jù)平行四邊形的性質(zhì)列出方程求解即可;
②分三種情況討論可知a與b滿足的數(shù)量關(guān)系式.
解答:解:(1)①∵四邊形ABCD是矩形,
∴AD∥BC,
∴∠CAD=∠ACB,∠AEF=∠CFE,
∵EF垂直平分AC,垂足為O,
∴OA=OC,
∴△AOE≌△COF,
∴OE=OF,
∴四邊形AFCE為平行四邊形,
又∵EF⊥AC,
∴四邊形AFCE為菱形,
②設(shè)菱形的邊長AF=CF=xcm,則BF=(8-x)cm,
在Rt△ABF中,AB=4cm,
由勾股定理得4
2+(8-x)
2=x
2,
解得x=5,
∴AF=5cm.
(2)①顯然當(dāng)P點在AF上時,Q點在CD上,此時A、C、P、Q四點不可能構(gòu)成平行四邊形;
同理P點在AB上時,Q點在DE或CE上或P在BF,Q在CD時不構(gòu)成平行四邊形,也不能構(gòu)成平行四邊形.
因此只有當(dāng)P點在BF上、Q點在ED上時,才能構(gòu)成平行四邊形,
∴以A、C、P、Q四點為頂點的四邊形是平行四邊形時,PC=QA,
∵點P的速度為每秒5cm,點Q的速度為每秒4cm,運動時間為t秒,
∴PC=5t,QA=12-4t,
∴5t=12-4t,
解得
,
∴以A、C、P、Q四點為頂點的四邊形是平行四邊形時,
秒.
②由題意得,四邊形APCQ是平行四邊形時,點P、Q在互相平行的對應(yīng)邊上.
分三種情況:
i)如圖1,當(dāng)P點在AF上、Q點在CE上時,AP=CQ,即a=12-b,得a+b=12;
ii)如圖2,當(dāng)P點在BF上、Q點在DE上時,AQ=CP,即12-b=a,得a+b=12;
iii)如圖3,當(dāng)P點在AB上、Q點在CD上時,AP=CQ,即12-a=b,得a+b=12.
綜上所述,a與b滿足的數(shù)量關(guān)系式是a+b=12(ab≠0).
點評:本題綜合性較強(qiáng),考查了矩形的性質(zhì)、菱形的判定與性質(zhì)、勾股定理、平行四邊形的判定與性質(zhì),注意分類思想的應(yīng)用.