【題目】綜合題。

(1)如圖1,在△ABC中,AB=AC,CD⊥ABD,BE⊥ACE,試證明:CD=BE.

(2)如圖2,在△ABC中,仍然有條件“AB=AC,點(diǎn)D,E分別在ABAC.若∠ADC+∠AEB=180°,則CDBE是否仍相等?若相等,請(qǐng)證明;若不相等,請(qǐng)舉反例說(shuō)明.

【答案】(1)證明見解析(2)CD=BE

【解析】試題分析:(1)利用AAS證明△ABE≌△ACD,利用全等三角形的性質(zhì)即可證得結(jié)論;(2分別作CF⊥AB,BG⊥AC,CD=BE,利用AAS證明△FBC≌△GCB,根據(jù)全等三角形的對(duì)應(yīng)邊相等可得CF=BG;再證得∠ADC=∠BEG,利用AAS證明△CFD≌△BGE,根據(jù)全等三角形的對(duì)應(yīng)邊相等即可得結(jié)論.

試題解析:

1)證明:∵CD⊥AB于點(diǎn)D,BE⊥AC,

∴∠AEB=∠ADC=90°

△ABE△ACD中,

∴△ABE≌△ACDAAS).

∴CD=BE

2CD=BE, 證明如下:分別作CF⊥AB,BG⊥AC,

∴∠CBF=90°,∠BGC=90°,

∵AB=AC

∴∠ABC=∠ACB,

△FBC△GCB中, ,

∴△FBC≌△GCB

∴CF=BG,

∵∠ADC+∠AEB=180°,

∵∠BEG+∠AEB=180°,

∴∠ADC=∠BEG

△CFD△BGE中, ,

∴△CFD≌△BGE,

∴CD=BE.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把下列各式因式分解

(1)4x3﹣16xy2;

(2)(x2﹣2x)2+2(x2﹣2x)+1;

(3)a4﹣16;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,真命題是( 。

A. 平行四邊形的對(duì)角線相等 B. 矩形的對(duì)角線平分對(duì)角

C. 菱形的對(duì)角線互相平分 D. 梯形的對(duì)角線互相垂直

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)的頂點(diǎn)M是直線=-和直線的交點(diǎn).

(1)若直線過(guò)點(diǎn)D(0,-3),求M點(diǎn)的坐標(biāo)及二次函數(shù)的解析式;

(2)試證明無(wú)論取任何值,二次函數(shù)的圖象與直線總有兩個(gè)不同的交點(diǎn);

(3)在(1)的條件下,若二次函數(shù)的圖象與軸交于點(diǎn)C,與的右交點(diǎn)為A,試在直線=-上求異于M的點(diǎn)P,使P在△CMA的外接圓上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,假命題是(  )

A. 菱形的面積等于兩條對(duì)角線乘積的一半

B. 矩形的對(duì)角線相等

C. 對(duì)角線互相垂直的平行四邊形是矩形

D. 對(duì)角線相等的菱形是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明從家里出發(fā)到超市買東西,再回到家,他離家的距離y(千米)與時(shí)間t(分鐘)的關(guān)系如圖所示.請(qǐng)你根據(jù)圖象回答下列問(wèn)題:

(1)小明家離超市的距離是   千米;

(2)小明在超市買東西時(shí)間為   小時(shí);

(3)小明去超市時(shí)的速度是    千米/小時(shí).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)a≠0)的圖象如圖所示該拋物線與x軸的一個(gè)交點(diǎn)(-1,0)為請(qǐng)回答以下問(wèn)題

1求拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo)

2)一元二次方程的解為

3)不等式的解集是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】因式分解:

1a 39a

2-4mn2-4m 2n-n3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一件服裝標(biāo)價(jià)200元,若以6折銷售,仍可獲利20%,則這件服裝的進(jìn)價(jià)是(
A.100元
B.105元
C.108元
D.118元

查看答案和解析>>

同步練習(xí)冊(cè)答案