【題目】鹽城市初級中學(xué)為了緩解校門口的交通堵塞,倡導(dǎo)學(xué)生步行上學(xué). 小麗步行從家去學(xué)校,圖中的線段表示小麗步行的路程s(米)與所用時間t(分鐘)之間的函數(shù)關(guān)系. 試根據(jù)函數(shù)圖像回答下列問題:

1)小麗家離學(xué)校 米;

2)小麗步行的速度是 /分鐘;

3)求出m的值.

【答案】11000;(2100;(3400

【解析】

1)觀察函數(shù)圖像直接回答即可;

2)觀察函數(shù)圖像得到上學(xué)的路程和時間即可求出速度;

3)根據(jù)(2)求出的速度即可求出4分鐘時所對的路程.

1)由函數(shù)圖像知路程為1000米;

2)由函數(shù)圖像知路程為1000米,時間為10分鐘,則速度為1000÷10=100/分鐘;

3)根據(jù)(2)知速度為100/分鐘,當(dāng)t=4時,則路程為4×100=400(米),則m=400.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點PAD延長線上一點,連接AC、CP,F(xiàn)AB邊上一點,滿足CFCP,過點BBMCF,分別交AC、CF于點M、N

(1)若AC=AP,AC=4,求ACP的面積;

(2)若BC=MC,證明:CP﹣BM=2FN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,EFAD,將平行四邊形ABCD沿著EF對折.設(shè)∠1的度數(shù)為,則∠C=______.(用含有n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為使中華傳統(tǒng)文化教育更具有實效性,軍寧中學(xué)開展以我最喜愛的傳統(tǒng)文化種類為主題的調(diào)查活動,圍繞在詩詞、國畫、對聯(lián)、書法、戲曲五種傳統(tǒng)文化中,你最喜愛哪一種?(必選且只選一種)的問題,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,將調(diào)查結(jié)果整理后繪制成如圖所示的不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息回答下列問題:

(1)本次調(diào)查共抽取了多少名學(xué)生?

(2)通過計算補(bǔ)全條形統(tǒng)計圖;

(3)若軍寧中學(xué)共有960名學(xué)生,請你估計該中學(xué)最喜愛國畫的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小東從A地出發(fā)以某一速度向B地走去,同時小明從B地出發(fā)以另一速度向A地走去,y1,y2分別表示小東、小明離B地的距離y(km)與所用時間x(h)的關(guān)系,如圖所示,根據(jù)圖象提供的信息,回答下列問題:

(1)試用文字說明交點P所表示的實際意義;

(2)y1x的函數(shù)關(guān)系式;

(3)A,B兩地之間的距離及小明到達(dá)A地所需的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,OA是⊙O的半徑,點DOA上的一動點,過D作線段CDOA交⊙O于點F,過點C作⊙O的切線BC,B為切點,連接AB,交CD于點E.

(1)求證:CB=CE;

(2)如圖2,當(dāng)點D運動到OA的中點時,CD剛好平分,求證:BCE是等邊三角形;

(3)如圖3,當(dāng)點D運動到與點O重合時,若⊙O的半徑為2,且∠DCB=45°,求線段EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線AC的垂直平分線分別交AB,CD于點E,F(xiàn),連接AF,CE,如果∠BCE=26°,則∠CAF=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,B=90°,AD=8cm,AB=6cm,BC=10cm,點Q從點A出發(fā)以1cm/s的速度向點D運動,點P從點B出發(fā)以2cm/s的速度向C點運動,P、Q兩點同時出發(fā),其中一點到達(dá)終點時另一點也停止運動.若DPDQ,當(dāng)t=_____s時,△DPQ是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)某學(xué)習(xí)小組在探究三角形全等時,發(fā)現(xiàn)了下面這種典型的基本圖形.如圖①,已知:在ABC中,∠BAC=90°AB=AC,直線l經(jīng)過點A,BD⊥直線L,CE⊥直線L,垂足分別為點D、E.證明:①△ABD≌△CAE;②DE=BD+CE。

2)組員小劉想,如果三個角不是直角,那結(jié)論是否會成立呢?如圖②,將(1)中的條件改為:在ABC中,AB=AC,D、A、E三點都在直線L上,并且有∠BDA=AEC=BAC=α,其中α為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案