如圖(1),P為△ABC所在平面上一點(diǎn),且∠APB=∠BPC=∠CPA=120°,則點(diǎn)P叫做△ABC的費(fèi)馬點(diǎn).
如圖(2),在銳角△ABC外側(cè)作等邊△ACB′連接BB′.
求證:BB′過△ABC的費(fèi)馬點(diǎn)P,且BB′=PA+PB+PC.
精英家教網(wǎng)

精英家教網(wǎng)
證明:在BB′上取點(diǎn)P,使∠BPC=120°,
連接AP,再在PB′上截取PE=PC,連接CE,
∵∠BPC=120°,
∴∠EPC=60°,
∴△PCE為正三角形,
∴PC=CE,∠PCE=60°,∠CEB′=120°,
∵△ACB′為正三角形,
∴AC=B′C,∠ACB′=60°,
∴∠PCA+∠ACE=∠ACE+∠ECB′=60°,
∴∠PCA=∠ECB′,
∴△ACP≌△B′CE,
∴∠APC=∠B′EC=120°,PA=EB′,
∴∠APB=∠APC=∠BPC=120°,
∴P為△ABC的費(fèi)馬點(diǎn),
∴BB′過△ABC的費(fèi)馬點(diǎn)P,且BB′=EB′+PB+PE=PA+PB+PC.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,∠ACB=90°,∠ABC=30°,將△ABC繞頂點(diǎn)C順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為θ(0°<θ<180°),得到△A1B1C.
(1)如圖1,當(dāng)AB∥CB1時(shí),設(shè)A1B1與BC相交于D.證明:△A1CD是等邊三角形;
(2)如圖2,連接AA1、BB1,設(shè)△ACA1和△BCB1的面積分別為S1、S2.求證:S1:S2=1:3;
(3)如圖3,設(shè)AC中點(diǎn)為E,A1B1中點(diǎn)為P,AC=a,連接EP,當(dāng)θ=
 
°時(shí),EP長度最大,最大值為
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,小正方形邊長為1,連接小正方形的三個(gè)頂點(diǎn),可得△ABC,則AC邊上的高長度為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)M是半徑為5的⊙O內(nèi)一點(diǎn),且OM=3,在過點(diǎn)M的所有⊙O的弦中,弦長為偶數(shù)的弦的條數(shù)為( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O是邊長為2的等邊△ABC的內(nèi)切圓,則⊙O的半徑為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:AB是⊙O的直徑,弦CD⊥AB于點(diǎn)G,E是直線AB上一動點(diǎn)(不與點(diǎn)A、B、G重合),直線DE交⊙O于點(diǎn)F,直線CF交直線AB于點(diǎn)P.設(shè)⊙O的半徑為r.
(1)如圖1,當(dāng)點(diǎn)E在直徑AB上時(shí),試證明:OE•OP=r2
(2)當(dāng)點(diǎn)E在AB(或BA)的延長線上時(shí),以如圖2點(diǎn)E的位置為例,請你畫出符合題意的圖形,標(biāo)注上字母,(1)中的結(jié)論是否成立?請說明理由.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案