如圖,在平行四邊形ABCD中,∠BAD、∠ABC的平分線AF、BG分別與線段CD交于點F、G,
AF與BG交于點E.
(1)求證:AF⊥BG,DF=CG;
(2)若AB=10,AD=6,AF=8,求FG和BG的長度.

(1)證明:∵AF平分∠BAD,
∴∠DAF=∠BAF=∠BAD.
∵BG平分∠ABC,
∴∠ABG=∠CBG=∠ABC.
∵四邊形ABCD平行四邊形,
∴AD∥BC,AB∥CD,AD=BC,
∴∠BAD+∠ABC=180°,
即2∠BAF+2∠ABG=180°,
∴∠BAF+∠ABG=90°.
∴∠AEB=180°-(∠BAF+∠ABG)=180°-90°=90°.
∴AF⊥BG;
∵AB∥CD,
∴∠BAF=∠AFD,
∴∠AFD=∠DAF,
∴DF=AD,
∵AB∥CD,
∴∠ABG=∠CGB,
∴∠CBG=∠CGB,
∴CG=BC,
∵AD=BC.
∴DF=CG;

(2)解:∵DF=AD=6,
∴CG=DF=6.
∴CG+DF=12,
∵四邊形ABCD平行四邊形,
∴CD=AB=10.
∴10+FG=12,
∴FG=2,
過點B作BH∥AF交DC的延長線于點H.
∴∠GBH=∠AEB=90°.
∵AF∥BH,AB∥FH,
∴四邊形ABHF為平行四邊形.
∴BH=AF=8,F(xiàn)H=AB=10.
∴GH=FG+FH=2+10=12,
∴在Rt△BHG中:BG==
∴FG的長度為2,BG的長度為4
分析:(1)由在平行四邊形ABCD中,∠BAD、∠ABC的平分線AF、BG分別與線段CD交于點F、G,易求得2∠BAF+2∠ABG=180°,即可得∠AEB=90°,證得AF⊥BG,易證得△ADF與△BCG是等腰三角形,即可得AD=DF,BC=CG,又由AD=BC,即可證得DF=CG;
(2)由(1)易求得DF=CG=8,CD=AB=10,即可求得FG的長;過點B作BH∥AF交DC的延長線于點H,易證得四邊形ABHF為平行四邊形,即可得△HBG是直角三角形,然后利用勾股定理,即可求得BG的長.
點評:此題考查了平行四邊形的判定與性質(zhì)、等腰三角形的判定與性質(zhì)、垂直的定義以及勾股定理等知識.此題綜合性較強,難度較大,注意掌握數(shù)形結(jié)合思想的應(yīng)用,注意掌握輔助線的作法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,在平行四邊形ABCD中,EF∥AD,GH∥AB,EF、GH相交于點O,則圖中共有
9
個平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點E,∠ADC的平分線交AB于點F,證明:四邊形DFBE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.點M是邊AD上一點,且DM:AD=1:3.點E、F分別從A、C同時出發(fā),以1厘米/秒的速度分別沿AB、CB向點B運動(當(dāng)點F運動到點B時,點E隨之停止運動),EM、CD精英家教網(wǎng)的延長線交于點P,F(xiàn)P交AD于點Q.設(shè)運動時間為x秒,線段PC的長為y厘米.
(1)求y與x之間函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當(dāng)x為何值時,PF⊥AD?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,AB=2
2
,AO=
3
,OB=
5
,則下列結(jié)論中不正確的是( 。
A、AC⊥BD
B、四邊形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•同安區(qū)一模)如圖,在平行四邊形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,則AD的長為
4cm
4cm

查看答案和解析>>

同步練習(xí)冊答案