【題目】在平面直角坐標系中,O為坐標原點,二次函數(shù)yx2+bx+c的圖象與x軸交于A,B兩點,與y軸的負半軸相交于點C(如圖),點C的坐標為(0,﹣3),且BOCO

1)求出B點坐標和這個二次函數(shù)的解析式;

2)求△ABC的面積;

3)設這個二次函數(shù)的圖象的頂點為M,求AM的長.

【答案】1yx22x3;(2SABC6;(3AM2

【解析】

1)首先根據(jù)BOCO,可得B點的坐標為(3,0),然后把B,C點坐標分別代入解析式可得b,c的值,即可得解析式;

2)令y0,求出A點的坐標,即可根據(jù)圖象求出△ABC的面積為×AB×OC;

3)解析式化成頂點式,求得頂點M的坐標,過Mx軸的垂線MD,垂足為D,連接AM,則MD4,AD2,利用勾股定理即可求得AM的長.

1C的坐標為(0,﹣3

∴CO|3|3

∵BOCO

∴BO3

∴B30),

分別把B30),C 0,﹣3)代入yx2+bx+c,得,

解得

二次函數(shù)的解析式為yx22x3;

2)在yx22x3中,令y0,得x22x30

解得x1=﹣1,x23

∴AB4

C的坐標為(0,﹣3

∴CO|3|3

∴SABC ×AB×CO×4×36;

3∵yx22x3=(x12+4

頂點M1,﹣4),

Mx軸的垂線MD,垂足為D,連接AM,

MD4AD2,

∴AM2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,拋物線經過點A(0,4)B(1,0)C(5,0),其對稱軸與x軸相交于點M

(1)求拋物線的解析式;

(2)在拋物線的對稱軸上是否存在一點P,使△PAB的周長最小?若存在,請求出點P的坐標;若不存在,請說明理由;

(3)連接AC,在直線AC的下方的拋物線上,是否存在一點N,使△NAC的面積最大?若存在,請求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一平面直角坐標系中,函數(shù)yaxbyax2bx的圖象可能是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知菱形紙片ABCD中,,點ECD邊的中點將該紙片折疊,使點B與點E重合,折痕交AD,BC邊于點M,N,連接ME,NE.請從下面A,B兩題中任選一題作答,我選擇A.如圖1,若,則ME的長為______B.如圖2,若,則ME的長為_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于反比例函數(shù)y,下列說法不正確的是( 。

A.圖象分布在第一、三象限

B.x0時,yx的增大而減小

C.圖象經過點(2,3

D.若點Ax1,y1),Bx2y2)都在圖象上,且x1x2,則y1y2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了預防甲型H1N1,某校對教室采用藥薰消毒法進行消毒,已知藥物燃燒時,室內每立方米空氣中的含藥量ymg)與時間x(min)成正比例,藥物燃燒后,yx成反比例,如圖所示,現(xiàn)測得藥物8min燃畢,此時室內空氣每立方米的含藥量為6mg,請你根據(jù)題中提供的信息,解答下列問題:

(1)藥物燃燒時,求y關于x的函數(shù)關系式?自變量x的取值范圍是什么?藥物燃燒后yx的函數(shù)關系式呢?

(2)研究表明,當空氣中每立方米的含藥量低于1.6mg時,生方可進教室,那么從消毒開始,至少需要幾分鐘后,生才能進入教室?

(3)研究表明,當空氣中每立方米的含藥量不低于3mg且持續(xù)時間不低于10min時,才能殺滅空氣中的毒,那么這次消毒是否有效?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設點是反比例函數(shù)圖象上的兩個點,當時,,則一次函數(shù)的圖象不經過的象限是

A.第一象限 B.第二象限 C.第三象限 D.第四象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

1x2+2x48

22x24x50

3sin60°+cos230°tan45°

43tan60°﹣(﹣10+

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x22a+1x+a2+30有兩個實數(shù)根x1,x2

1)求實數(shù)a的取值范圍

2)若等腰△ABC的三邊長分別為x1,x2,6,求△ABC的周長

3)是否存在實數(shù)a,使x1x2恰是一個邊長為的菱形的兩條對角線的長?若存在,求出這個菱形的面積;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案