【題目】列方程()解應(yīng)用題

打折前,買60A商品和30B商品用了1080元,買50A商品和10B商品用了840元.打折后,買500A商品和500B商品用了9600元,比不打折少花費(fèi)多少錢?

【答案】打折買500A商品和500B商品比不打折少花了400.

【解析】

設(shè)打折前A商品每件x元,B商品每件y元,根據(jù)①買60A商品和30B商品用了1080元;②買50A商品和10B商品用了840元.可列出方程組求得A、B商品的單件,繼而可得打折前買500A商品和500B商品所需總費(fèi)用,比較即可得答案.

解:設(shè)商品A每件原價(jià)x元,商品B每件原價(jià)y元,

依題意,得

解得,

則買500A商品和500B商品打折前后相差:

()

答:打折買500A商品和500B商品比不打折少花了400.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰ABC中,AB=AC,以AB為直徑作⊙O交邊BC于點(diǎn)D,過點(diǎn)DDEACAC于點(diǎn)E,延長EDAB的延長線于點(diǎn)F.

(1)求證:DE是⊙O的切線;

(2)若AB=8,AE=6,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1,在面積為3的正方形ABCD中,E、F分別是BC和CD邊上的兩點(diǎn),AEBF于點(diǎn)G,且BE=1.

(1)求證:ABE≌△BCF;

(2)求出ABE和BCF重疊部分(即BEG)的面積;

(3)現(xiàn)將ABE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)到AB′E′(如圖2),使點(diǎn)E落在CD邊上的點(diǎn)E′處,問ABE在旋轉(zhuǎn)前后與BCF重疊部分的面積是否發(fā)生了變化?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l的函數(shù)表達(dá)式為y=x,點(diǎn)O1的坐標(biāo)為(10),以O1為圓心,O1O為半徑畫半圓,交直線l于點(diǎn)P1,交x軸正半軸于點(diǎn)O2,由弦P1O2圍成的弓形面積記為S1,以O2為圓心,O2O為半徑畫圓,交直線l于點(diǎn)P2,交x軸正半軸于點(diǎn)O3,由弦P2O3和圍成的弓形面積記為S2,以O3為圓心,O3O為半徑畫圓,交直線l于點(diǎn)P3,交x軸正半軸于點(diǎn)O4,由弦P3O4圍成的弓形面積記為S3;按此做法進(jìn)行下去,其中S2018的面積為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有甲,乙兩種機(jī)器人都被用來搬運(yùn)某體育館室內(nèi)裝潢材料甲型機(jī)器人比乙型機(jī)器人每小時(shí)少搬運(yùn)30千克,甲型機(jī)器人搬運(yùn)600千克所用的時(shí)間與乙型機(jī)器人搬運(yùn)800千克所用的時(shí)間相同,兩種機(jī)器人每小時(shí)分別搬運(yùn)多少千克?設(shè)甲型機(jī)器人每小時(shí)搬運(yùn)x千克,根據(jù)題意,可列方程為(  )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為推進(jìn)郴州市創(chuàng)建國家森林城市工作,盡快實(shí)現(xiàn)讓森林走進(jìn)城市,讓城市擁抱森林的構(gòu)想,今年三月份,某縣園林辦購買了甲、乙兩種樹苗共1000棵,其中甲種樹苗每棵40元,乙種樹苗每棵50元,據(jù)相關(guān)資料表明:甲、乙兩種樹苗的成活率分別為85%90%

1)若購買甲、乙兩種樹苗共用去了46500元,則購買甲、乙兩種樹苗各多少棵?

2)若要使這批樹苗的成活率不低于88%,則至多可購買甲種樹苗多少棵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)課上,張老師出示了一個(gè)題目:如圖,ABCD的對角線相交于點(diǎn)O,過點(diǎn)OEF垂直于BDAB,CD分別于點(diǎn)F,E,連接DF,請根據(jù)上述條件,寫出一個(gè)正確結(jié)論其中四位同學(xué)寫出的結(jié)論如下:

小青:;小何:四邊形DFBE是正方形;

小夏:;小雨:

這四位同學(xué)寫出的結(jié)論中不正確的是  

A. 小青 B. 小何 C. 小夏 D. 小雨

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在RtABC中,∠ABC90°,BF為斜邊上的高,在射線AB上有點(diǎn)D,連接DF,作∠DFE90°,FE交射線BC于點(diǎn)E

(問題發(fā)現(xiàn))如圖1所示,如果ABCB,則DFEF的數(shù)量關(guān)系為DF   EF(選填>,<,=)

(類比探究)如圖2所示,如果改變RtABC中兩直角邊的比例,使得AB2BC,則DFEF還存在①中的關(guān)系嗎?

(拓展延伸)如圖3所示,在RtABC中,如果已知BC,AB3,EF,試求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+c的圖象與x軸的一個(gè)交點(diǎn)坐標(biāo),頂點(diǎn)A的坐標(biāo)為.直線x軸于點(diǎn)B,交y軸于點(diǎn)C,與拋物線的對稱軸交于點(diǎn)DEy軸上的一個(gè)動(dòng)點(diǎn).

1)求這條拋物線的解析式和點(diǎn)D的坐標(biāo);

2)若以CD、E為頂點(diǎn)的三角形與ACD相似,求點(diǎn)E的坐標(biāo);

3)若點(diǎn)E關(guān)于直線BC的對稱點(diǎn)M恰好落在拋物線上,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案