10、如果一直角三角形的三邊為a,b,c,∠B=90°,那么關于x的方程a(x2-1)-2cx+b(x2+1)=0的根的情況為(  )
分析:根據(jù)勾股定理,確立a2+c2=b2,化簡根的判別式,判斷根的情況就是判斷△與0的大小關系.
解答:解:∵∠B=90°
∴a2+c2=b2
化簡原方程為:(a+b)x2-2cx+b-a=0
∴△=4c2-4(b2-a2)=4c2-4c2=0
∴方程有兩個相等實數(shù)根
故選A
點評:總結:
1、勾股定理:在直角三角形中,∠C=90°,有a2+b2=c2
2、一元二次方程根的情況與判別式△的關系:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

小華用兩塊不全等的等腰直角三角形的三角板擺放圖形.
(1)如圖①所示△ABC,△DBE,兩直角邊交于點F,過點F作FG∥BC交AB于點G,連接BF、AD,則線段BF與線段AD的數(shù)量關系是
 
;直線BF與直線AD的位置關系是
 
,并求證:FG+DC=AC;
(2)如果小華將兩塊三角板△ABC,△DBE如圖②所示擺放,使D、B、C三點在一條直線上,AC、DE的延長線相交于點F,過點F作FG∥BC,交直線AE于點G,連接AD,F(xiàn)B,則FG、DC、AC之間滿足的數(shù)量關系式是
 
;
(3)在(2)的條件下,若AG=7
2
,DC=5,將一個45°角的頂點與點B重合,并繞點B旋轉,這個角的兩邊分別交線段FG于P、Q兩點(如圖③),線段DF分別與線段BQ、BP相交于M、N兩點,若PG=2,求線段MN的長.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•梁子湖區(qū)模擬)下列說法中:
①已知D是△ABC中的邊BC上的一點,∠BAD=∠C,則有AB2=BD•BC;
②若關于x的不等式2x-m<0有且只有一個正整數(shù)解,則m的取值范圍是2<m≤4;
③在一個有12000人的小鎮(zhèn)上,隨機抽樣調查2000人,其中有360人看過“7•23甬溫線特別重大鐵路交通事故”新聞報道.那么在該鎮(zhèn)隨便問一人,他(她)看過央視這一報道的概率是18%;
④如果直角三角形的斜邊長為18,那么這個直角三角形的三條邊上的中線的交點到直角頂點的距離為6.正確命題有(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

下列說法中:
①已知D是△ABC中的邊BC上的一點,∠BAD=∠C,則有AB2=BD•BC;
②若關于x的不等式2x-m<0有且只有一個正整數(shù)解,則m的取值范圍是2<m≤4;
③在一個有12000人的小鎮(zhèn)上,隨機抽樣調查2000人,其中有360人看過“7•23甬溫線特別重大鐵路交通事故”新聞報道.那么在該鎮(zhèn)隨便問一人,他(她)看過央視這一報道的概率是18%;
④如果直角三角形的斜邊長為18,那么這個直角三角形的三條邊上的中線的交點到直角頂點的距離為6.

正確命題有


  1. A.
    1個
  2. B.
    2個
  3. C.
    3個
  4. D.
    4個

查看答案和解析>>

科目:初中數(shù)學 來源:2012年湖北省鄂州市梁子湖區(qū)中考數(shù)學模擬試卷(解析版) 題型:選擇題

下列說法中:
①已知D是△ABC中的邊BC上的一點,∠BAD=∠C,則有AB2=BD•BC;
②若關于x的不等式2x-m<0有且只有一個正整數(shù)解,則m的取值范圍是2<m≤4;
③在一個有12000人的小鎮(zhèn)上,隨機抽樣調查2000人,其中有360人看過“7•23甬溫線特別重大鐵路交通事故”新聞報道.那么在該鎮(zhèn)隨便問一人,他(她)看過央視這一報道的概率是18%;
④如果直角三角形的斜邊長為18,那么這個直角三角形的三條邊上的中線的交點到直角頂點的距離為6.正確命題有( )
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

下列說法中錯誤的是


  1. A.
    如果三角形的一條高和它的一邊重合,那么這個三角形有一個內(nèi)角是直角
  2. B.
    三角形的三個內(nèi)角中,至少有兩個是銳角
  3. C.
    三角形的三個內(nèi)角中,至少有一個內(nèi)角不大于60°
  4. D.
    三角形中,任意兩個內(nèi)角的和必須大于90°

查看答案和解析>>

同步練習冊答案