(2012•梁子湖區(qū)模擬)下列說法中:
①已知D是△ABC中的邊BC上的一點,∠BAD=∠C,則有AB2=BD•BC;
②若關(guān)于x的不等式2x-m<0有且只有一個正整數(shù)解,則m的取值范圍是2<m≤4;
③在一個有12000人的小鎮(zhèn)上,隨機抽樣調(diào)查2000人,其中有360人看過“7•23甬溫線特別重大鐵路交通事故”新聞報道.那么在該鎮(zhèn)隨便問一人,他(她)看過央視這一報道的概率是18%;
④如果直角三角形的斜邊長為18,那么這個直角三角形的三條邊上的中線的交點到直角頂點的距離為6.正確命題有( 。
分析:①利用相似三角形的判定定理以及相似三角形的對應(yīng)邊的比相等,即可判斷;
②根據(jù)不等式的解集的確定方法即可確定m的范圍;
③根據(jù)總體概率約等于樣本概率,即可求得;
④根據(jù)直角三角形斜邊上的中線等于斜邊的一半,以及三角形的重心的性質(zhì)即可判斷.
解答:解:①∵∠BAD=∠C,且∠B=∠B,
∴△ABC∽△DBA
AB
BD
=
BC
AB

∴AB2=BD•BC,故命題正確;
②解不等式2x-m<0,得:x<
m
2
,
∵不等式2x-m<0有且只有一個正整數(shù)解,
∴1<
m
2
≤2,
則2<m≤4,故命題正確;
③隨機抽樣調(diào)查2000人,其中有360人看過“7•23甬溫線特別重大鐵路交通事故”新聞報道.那么在該鎮(zhèn)隨便問一人,他(她)看過央視這一報道的概率是18%,正確;
④直角三角形的斜邊長為18,則斜邊上的中線長是
1
2
×18=9,則三條邊上的中線的交點到直角頂點的距離為9×
2
3
=6,故命題正確.
故選D.
點評:主要考查命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關(guān)鍵是要熟悉課本中的性質(zhì)定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•梁子湖區(qū)模擬)將代數(shù)式x2+4x-1化成(x+p)2+q的形式為
(x+2)2-5
(x+2)2-5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•梁子湖區(qū)模擬)如圖,已知函數(shù)y=-
3
x
與y=ax2+bx(a>0,b>0)的圖象交于點P,點P的縱坐標為1,則關(guān)于x的不等式ax2+bx+
3
x
>0的解為
x<-3或x>0
x<-3或x>0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•梁子湖區(qū)模擬)如圖,DE是△ABC的中位線,M是DE的中點,CM的延長線交AB于N,且S△ABC=24,那么S四邊形ANME-S△DMN=
4
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•梁子湖區(qū)模擬)tan60°=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•梁子湖區(qū)模擬)如圖,等腰梯形ABCD的底邊AD在x軸上,頂點C在y軸正半軸上,B(4,2),一次函數(shù)y=kx-1的圖象平分它的面積,關(guān)于x的函數(shù)y=mx2-(3m+k)x+2m+k的圖象與坐標軸只有兩個交點,則m的值為( 。

查看答案和解析>>

同步練習(xí)冊答案