【題目】如圖,在△ABC中,AD,BE是兩條中線,則SEDC:SABC=( )

A.1:2
B.1:4
C.1:3
D.2:3

【答案】B
【解析】解:∵在△ABC中,AD,BE是兩條中線,

∴DE∥AB,DE= AB,

∴△EDC∽△ABC,

∴SEDC:SABC=( 2=1:4.

所以答案是:B.

【考點精析】解答此題的關鍵在于理解三角形中位線定理的相關知識,掌握連接三角形兩邊中點的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半,以及對相似三角形的判定與性質(zhì)的理解,了解相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠A=30°,∠C=90°,AB=12,四邊形EFPQ是矩形,點P與點C重合,點Q、EF分別在BC、ABAC上(點E與點A、點B均不重合).

(1)當AE=8時,求EF的長;

(2)設AEx,矩形EFPQ的面積為y

yx的函數(shù)關系式;

x為何值時,y有最大值,最大值是多少?

(3)當矩形EFPQ的面積最大時,將矩形EFPQ以每秒1個單位的速度沿射線CB勻速向右運動(當點P到達點B時停止運動),設運動時間為t秒,矩形EFPQ與△ABC重疊部分的面積為S,求St的函數(shù)關系式,并寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=10cm,BD⊥AC于點D,BD=8cm.點M從點A出發(fā),沿AC的方向勻速運動,同時直線PQ由點B出發(fā),沿BA的方向勻速運動,運動過程中始終保持PQ∥AC,直線PQ交AB于點P、交BC于點Q、交BD于點F.連接PM,設運動時間為t秒(0<t≤5).線段CM的長度記作y , 線段BP的長度記作y , y和y關于時間t的函數(shù)變化情況如圖所示.

(1)由圖2可知,點M的運動速度是每秒cm,當t為何值時,四邊形PQCM是平行四邊形?在圖2中反映這一情況的點是;
(2)設四邊形PQCM的面積為ycm2 , 求y與t之間的函數(shù)關系式;
(3)是否存在某一時刻t,使S四邊形PQCM= S△ABC?若存在,求出t的值;若不存在,說明理由;
(4)連接PC,是否存在某一時刻t,使點M在線段PC的垂直平分線上?若存在,求出此時t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果關于x、y的代數(shù)式(2x2+axy+6)﹣(2bx23x+5y1)的值與字母x所取的值無關,試求代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠B=90°,AB=BC=3,CD=8,AD=10.

(1)求∠BCD的度數(shù);

(2)求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB30 cmBC35 cm,∠B60°,有一動點MAB1 cm/s的速度運動,動點NBC2 cm/s的速度運動,若MN同時分別從A,B出發(fā).

(1)經(jīng)過多少秒,BMN為等邊三角形;

(2)經(jīng)過多少秒,BMN為直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,分別以直角△ABC的斜邊AB,直角邊AC為邊向△ABC外作等邊△ABD和等邊△ACE,F(xiàn)AB的中點,DEAB交于點G,EFAC交于點H,∠ACB=90°,∠BAC=30°.給出如下結論:

①EFAC;四邊形ADFE為菱形;③AD=4AG;④FH=BD

其中正確結論的為______(請將所有正確的序號都填上).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠AOB=BOC=COD,下列結論中錯誤的是( 。

A. OB、OC分別平分

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AC=4,BD=6,P是BD上的任意一點,過點P作EF∥AC,與菱形的兩條邊分別交于點E、F.設BP=x,EF=y,則下列圖象能大致反映y與x的函數(shù)關系的是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案