【題目】已知方程x2+x=2,則下列說法中,正確的是(
A.方程兩根和是1
B.方程兩根積是2
C.方程兩根和是﹣1
D.方程兩根積比兩根和大2

【答案】C
【解析】解:x2+x﹣2=0,
兩根之和為﹣1,兩根之積為﹣2.
故選C.
【考點精析】根據(jù)題目的已知條件,利用根與系數(shù)的關(guān)系的相關(guān)知識可以得到問題的答案,需要掌握一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定;兩根之和等于方程的一次項系數(shù)除以二次項系數(shù)所得的商的相反數(shù);兩根之積等于常數(shù)項除以二次項系數(shù)所得的商.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,點(2,1)關(guān)于x軸的對稱點是( )

A. (-2,1) B. (-2,-1) C. (2,-1) D. (1,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把多項式9﹣2x2+x按字母x降冪排列是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠ACB=90°,AC=6cm,BC=8cm.點PA點出發(fā)沿A→C→B路徑向終點運(yùn)動,終點為B點;點QB點出發(fā)沿B→C→A路徑向終點運(yùn)動,終點為A點.點PQ分別以每秒1cm3cm的運(yùn)動速度同時開始運(yùn)動,兩點都要到相應(yīng)的終點時才能停止運(yùn)動,在某時刻,分別過PQPElE,QFlF.設(shè)運(yùn)動時間為t秒,則當(dāng)t=_________秒時,PECQFC全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列一元二次方程中,沒有實數(shù)根的是(  )

A.x22x0B.x22x+10C.2x2x10D.2x2x+10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,MAN=90°,射線AE在這個角的內(nèi)部,點B、C分別在∠MAN的邊AMAN上,且AB=AC,CFAE于點F,BDAE于點D.求證:ABD≌△CAF

2)如圖2,點B、C分別在∠MAN的邊AMAN上,點E、F都在∠MAN內(nèi)部的射線AD上,∠1、2分別是ABE、CAF的外角.已知AB=AC,且∠1=2=BAC.求證:ABE≌△CAF;

3)如圖3,在ABC中,AB=AC,ABBC.點D在邊BC上,CD=2BD,點EF在線段AD上,∠1=2=BAC.若ABC的面積為15,求ACFBDE的面積之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,①若ABBCCA,則ABC是等邊三角形;②屬于軸對稱圖形,且有一個角為60°的三角形是等邊三角形;③有三條對稱軸的三角形是等邊三角形;④有兩個角是60°的三角形是等邊三角形,上述結(jié)論中正確的有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=x2+與y軸相交于點A,點B與點O關(guān)于點A對稱

(1)填空:點B的坐標(biāo)是 ;

(2)過點B的直線y=kx+b(其中k<0)與x軸相交于點C,過點C作直線l平行于y軸,P是直線l上一點,且PB=PC,求線段PB的長(用含k的式子表示),并判斷點P是否在拋物線上,說明理由;

(3)在(2)的條件下,若點C關(guān)于直線BP的對稱點C′恰好落在該拋物線的對稱軸上,求此時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x+4與x軸、y軸分別交于點A和點B,點C、D分別為線段AB、OB的中點,點P為OA上一動點,PC+PD值最小時點P的坐標(biāo)為(

A.(﹣3,0) B.(﹣6,0) C.(﹣,0) D.(﹣,0)

查看答案和解析>>

同步練習(xí)冊答案