【題目】已知方程x2+x=2,則下列說法中,正確的是( )
A.方程兩根和是1
B.方程兩根積是2
C.方程兩根和是﹣1
D.方程兩根積比兩根和大2
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,點(2,1)關(guān)于x軸的對稱點是( )
A. (-2,1) B. (-2,-1) C. (2,-1) D. (1,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=6cm,BC=8cm.點P從A點出發(fā)沿A→C→B路徑向終點運(yùn)動,終點為B點;點Q從B點出發(fā)沿B→C→A路徑向終點運(yùn)動,終點為A點.點P和Q分別以每秒1cm和3cm的運(yùn)動速度同時開始運(yùn)動,兩點都要到相應(yīng)的終點時才能停止運(yùn)動,在某時刻,分別過P和Q作PE⊥l于E,QF⊥l于F.設(shè)運(yùn)動時間為t秒,則當(dāng)t=_________秒時,△PEC與△QFC全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列一元二次方程中,沒有實數(shù)根的是( )
A.x2﹣2x=0B.x2﹣2x+1=0C.2x2﹣x﹣1=0D.2x2﹣x+1=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,∠MAN=90°,射線AE在這個角的內(nèi)部,點B、C分別在∠MAN的邊AM、AN上,且AB=AC,CF⊥AE于點F,BD⊥AE于點D.求證:△ABD≌△CAF;
(2)如圖2,點B、C分別在∠MAN的邊AM、AN上,點E、F都在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,且∠1=∠2=∠BAC.求證:△ABE≌△CAF;
(3)如圖3,在△ABC中,AB=AC,AB>BC.點D在邊BC上,CD=2BD,點E、F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為15,求△ACF與△BDE的面積之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,①若AB=BC=CA,則△ABC是等邊三角形;②屬于軸對稱圖形,且有一個角為60°的三角形是等邊三角形;③有三條對稱軸的三角形是等邊三角形;④有兩個角是60°的三角形是等邊三角形,上述結(jié)論中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=x2+與y軸相交于點A,點B與點O關(guān)于點A對稱
(1)填空:點B的坐標(biāo)是 ;
(2)過點B的直線y=kx+b(其中k<0)與x軸相交于點C,過點C作直線l平行于y軸,P是直線l上一點,且PB=PC,求線段PB的長(用含k的式子表示),并判斷點P是否在拋物線上,說明理由;
(3)在(2)的條件下,若點C關(guān)于直線BP的對稱點C′恰好落在該拋物線的對稱軸上,求此時點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+4與x軸、y軸分別交于點A和點B,點C、D分別為線段AB、OB的中點,點P為OA上一動點,PC+PD值最小時點P的坐標(biāo)為( )
A.(﹣3,0) B.(﹣6,0) C.(﹣,0) D.(﹣,0)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com