精英家教網 > 初中數學 > 題目詳情

【題目】如圖,四邊形ABCD中,點M、N分別在AB、BC上,將BMN沿MN翻折,得FMN,若MFAD,FNDC,則∠D的度數為_________

【答案】90

【解析】首先利用平行線的性質得出∠BNF=100°,∠FNB=70°,再利用翻折變換的性質得出∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,進而求出∠B的度數以及得出∠D度數.

解:∵MF∥AD,FN∥DC,∠A=100°,∠C=70°,

∴∠BMF=100°,∠FNB=70°,

∵將△BMN沿MN翻折,得△FMN,

∴∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,

∴∠F=∠B=180°-50°-35°=95°

∴∠D=360°-100°-70°-90°=95°.

“點睛”此題主要考查了平行線的性質以及多邊形內角和定理以及翻折變換的性質,得出∠FMN=∠BMN,∠FNM=∠MNB是解題關鍵.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】(10分)為了提高產品的附加值,某公司計劃將研發(fā)生產的1200件新產品進行精加工后再投放市場.現有甲、乙兩個工廠都具備加工能力,公司派出相關人員分別到這兩間工廠了解情況,獲得如下信息:

信息一:甲工廠單獨加工完成這批產品比乙工廠單獨加工完成這批產品多用10天;

信息二:乙工廠每天加工的數量是甲工廠每天加工數量的15倍.

根據以上信息,求甲、乙兩個工廠每天分別能加工多少件新產品?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,在△ABC中有D、E兩點,求證:BD+DE+EC<AB+AC.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】分解因式:m2n﹣2mn+n= .

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,M是鐵絲AD的中點,將該鐵絲首尾相接折成△ABC,且∠B=30°∠C=100°,如圖2.則下列說法正確的是( )

A. MAB

B. MBC的中點處

C. MBC上,且距點B較近,距點C較遠

D. MBC上,且距點C較近,距點B較遠

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列運算正確的是(  )
A.3a2a3=3a6
B.5x4﹣x2=4x2
C.(2a23(﹣ab)=﹣8a7b
D.2x2÷2x2=0

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一只不透明的袋子中裝有4個黑球、2個白球,每個球除顏色外都相同,從中任意摸出3個球,下列事件為必然事件的是( 。
A.至少有1個球是黑球
B.至少有1個球是白球
C.至少有2個球是黑球
D.至少有2個球是白球

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】x2–3x+m可分解為(x+3)(x+n),則m =_______,n=_____.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知BE和CF是△ABC的兩條高,∠ABC=48°,∠ACB=76°,則∠FDE=

查看答案和解析>>

同步練習冊答案