【題目】如圖,是用直尺和圓規(guī)作一個角等于己知角的方法,即作.這種作法依據(jù)的是(

A.SSSB.SASC.AASD.ASA

【答案】A

【解析】

由作圖過程分析知OD= OC= OC'= OD', CD= C'D',顯然運用的判定方法是SSS

解:作圖的步驟:

①以O為圓心,任意長為半徑畫弧,分別交OAOB于點C、D ;

②任意作一點O',作射線O'B',O' 為圓心,OD長為半徑畫弧,O'B'于點D' ;

③以D'為圓心,CD長為半徑畫弧,交前弧于點C'

④過點C'作射線O'A'.

分別連接CD、C'D'(作圖完畢).

由作圖可知

OD= OC= O'C'= O'D', CD= C'D'

∴在△DOC和△D'O'C'

∴△DOC≌△D'O'C'(SSS)

∴∠AOB = A'O'B'

故選A.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,,為邊上一動點,,中點,則的最小值為(

A.B.4C.5D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若一個正比例函數(shù)的圖象經(jīng)過點(﹣2,1),則這個圖象也一定經(jīng)過點( )
A.(﹣ ,1)
B.(2,﹣1)
C.(﹣1,2)
D.(1,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,CECF分別平分∠ACB和△ABC的外角∠ACD,一動點OAC上運動,過點OBD的平行線與∠ACB和∠ACD的角平分線分別交于點E和點F

1)求證:當點O運動到什么位置時,四邊形AECF為矩形,說明理由;

2)在第(1)題的基礎(chǔ)上,當△ABC滿足什么條件時,四邊形AECF為正方形,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某中學舉行中國夢校園好聲音歌手大賽,高、初中部根據(jù)初賽成績,各選出5名選手組成初中代表隊和高中代表隊參加學校決賽.兩個隊各選出的5名選手的決賽成績?nèi)鐖D所示.

1)根據(jù)圖示填寫下表;

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

初中部

85

高中部

85

100

2)結(jié)合兩隊成績的平均數(shù)和中位數(shù),分析哪個隊的決賽成績較好;

3)計算兩隊決賽成績的方差并判斷哪一個代表隊選手成績較為穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是位于陜西省西安市薦福寺內(nèi)的小雁塔,是中國早期方形密檐式磚塔的典型作品,并作為絲綢之路的一處重要遺址點,被列入《世界遺產(chǎn)名錄》.小銘、小希等幾位同學想利用一些測量工具和所學的幾何知識測量小雁塔的高度,由于觀測點與小雁塔底部間的距離不易測量,因此經(jīng)過研究需要進行兩次測量,于是在陽光下,他們首先利用影長進行測量,方法如下:小銘在小雁塔的影子頂端D處豎直立一根木棒CD,并測得此時木棒的影長DE=2.4米;然后,小希在BD的延長線上找出一點F,使得A、C、F三點在同一直線上,并測得DF=2.5米.已知圖中所有點均在同一平面內(nèi),木棒高CD=1.72米,AB⊥BF,CD⊥BF,試根據(jù)以上測量數(shù)據(jù),求小雁塔的高度AB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題探究:探究與應用
(1)如圖1,在正方形ABCD中,AB=2,點E是邊AD的中點,請在對角線AC上找一點P,使得PE+PD的值最小,并求出這個最小值;(不用寫作法,保留作圖痕跡)

(2)如圖2,在矩形ABCD中,AB=6,BC=8,點E是邊BC的中點,若點P是邊AB上一動點,當△PED的周長最小時,求BP的長度;
問題解決:

(3)某市規(guī)劃在市中心廣場內(nèi)修建一個矩形的活動中心,如圖3,矩形OABC是它的規(guī)劃圖紙,其中A為入口,已知OA=30,OC=20,點E是邊AB的中點,以頂點O為原點,OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標系,點D是邊OA上一點,若將△ABD沿BD翻折,點A恰好落在邊BC上的點F處,在點F處設(shè)一出口,點M、N分別是邊OA、OC上的點,現(xiàn)規(guī)劃在點M、N、F、E四處各安置一個健身器材,并依次修建MN、NF、FE及EM四條小路,則是否存在點M、N,使得這四條小路的總長度最?若存在,求出這個最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為 ,連接AC,AE平分∠CAD,交BC的延長線于點E,F(xiàn)A⊥AE,交CB的延長線于點F,則EF的長為( )

A.2
B.4
C.2
D.4

查看答案和解析>>

同步練習冊答案