如圖,在邊長為6的大正方形中有兩個小正方形,若兩個小正方形的面積分別為,
的值為(    )
A.16B.17
C.18D.19
p;【答案】B解析:
設(shè)正方形S1的邊長為x,
∵△ABC和△CDE都為等腰直角三角形,
∴AB=BC,DE=DC,∠ABC=∠D=90°,
∴tan∠CAB=tan45°==,即AC=BC,同理可得:BC=CE=CD,
∴AC=BC=2CD,又AD=AC+CD=6,
∴CD==2,
∴EC2=22+22,即EC=2;
∴S1的面積為EC2=2×2=8;
∵∠MAO=∠MOA=45°,
∴AM=MO,
∵MO=MN,
∴AM=MN,
∴M為AN的中點,
∴S2的邊長為3,
∴S2的面積為3×3=9,
∴S1+S2=8+9=17.
故選B.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在邊長為2的正方形ABCD的一邊BC上,一點P從B點運動到C點,設(shè)BP=x,四邊形APCD的面積為y.
(1)寫出y與x之間的關(guān)系式,你能求出x的范圍嗎?
(2)當x為何值時,四邊形APCD的面積為
32
?
(3)當點P由B向C運動時,四邊形APCD的面積越來越大,還是越來越。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在邊長為2的等邊△ABC中,AD⊥BC,點P為邊AB 上一個動點,過P點作PF∥AC交線段BD于點F,作PG⊥AB交AD于點E,交線段CD于點G,設(shè)BP=x.
(1)①試判斷BG與2BP的大小關(guān)系,并說明理由;②用x的代數(shù)式表示線段DG的長,并寫出自變量x的取值范圍;
(2)記△DEF的面積為S,求S與x之間的函數(shù)關(guān)系式,并求出S的最大值;
(3)以P、E、F為頂點的三角形與△EDG是否可能相似?如果能相似,請求出BP的長,如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•百色)如圖,在邊長為10cm的正方形ABCD中,P為AB邊上任意一點(P不與A、B兩點重合),連結(jié)DP,過點P作PE⊥DP,垂足為P,交BC于點E,則BE的最大長度為
5
2
5
2
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•無錫)如圖,在邊長為24cm的正方形紙片ABCD上,剪去圖中陰影部分的四個全等的等腰直角三角形,再沿圖中的虛線折起,折成一個長方體形狀的包裝盒(A、B、C、D四個頂點正好重合于上底面上一點).已知E、F在AB邊上,是被剪去的一個等腰直角三角形斜邊的兩個端點,設(shè)AE=BF=x(cm).
(1)若折成的包裝盒恰好是個正方體,試求這個包裝盒的體積V;
(2)某廣告商要求包裝盒的表面(不含下底面)面積S最大,試問x應(yīng)取何值?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•武漢模擬)如圖,在邊長為1的等邊△OAB中,以邊AB為直徑作⊙D,以O(shè)為圓心OA長為半徑作圓O,C為半圓AB上不與A、B重合的一動點,射線AC交⊙O于點E,BC=a,AC=b.
(1)求證:AE=b+
3
a;
(2)求a+b的最大值;
(3)若m是關(guān)于x的方程:x2+
3
ax=b2+
3
ab的一個根,求m的取值范圍.

查看答案和解析>>

同步練習冊答案