【題目】如圖,直線MN與⊙O相切于點M,ME=EF且EF∥MN,則cos∠E= .
【答案】
【解析】解:連接OM,OM的反向延長線交EF于點C,如圖,
∵直線MN與⊙O相切于點M,
∴OM⊥MN,
∵EF∥MN,
∴MC⊥EF,
∴CE=CF,
∴ME=MF,
而ME=EF,
∴ME=EF=MF,
∴△MEF為等邊三角形,
∴∠E=60°,
∴cos∠E=cos60°= .
故答案為: .
連接OM,OM的反向延長線交EF于點C,由直線MN與⊙O相切于點M,根據(jù)切線的性質(zhì)得OM⊥MN,而EF∥MN,根據(jù)平行線的性質(zhì)得到MC⊥EF,于是根據(jù)垂徑定理有CE=CF,再利用等腰三角形的判定得到ME=MF,易證得△MEF為等邊三角形,所以∠E=60°,然后根據(jù)特殊角的三角函數(shù)值求解.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某園林部門決定利用現(xiàn)有的349盆甲種花卉和295盆乙種花卉搭配A、B兩種園藝造型共50個,擺放在迎賓大道兩側(cè).已知搭配一個A種造型需甲種花卉8盆,乙種花卉4盆;搭配一個B種造型需甲種花卉5盆,乙種花卉9盆.
(1)某校九年級某班課外活動小組承接了這個園藝造型搭配方案的設(shè)計,問符合題意的搭配方案有幾種?請你幫助設(shè)計出來;
(2)若搭配一個A種造型的成本是200元,搭配一個B種造型的成本是360元,試說明(1)中哪種方案成本最低,最低成本是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象交x軸于A、B兩點,交y軸于點C,且B(1,0),C(0,3),將△BOC繞點O按逆時針方向旋轉(zhuǎn)90°,C點恰好與A重合.
(1)求該二次函數(shù)的解析式;
(2)若點P為線段AB上的任一動點,過點P作PE∥AC,交BC于點E,連結(jié)CP,求△PCE面積S的最大值;
(3)設(shè)拋物線的頂點為M,Q為它的圖象上的任一動點,若△OMQ為以O(shè)M為底的等腰三角形,求Q點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某中學(xué)九年級學(xué)生中考體育成績情況,現(xiàn)從中抽取部分學(xué)生的體育成績進行分段(A:50分、B:49~40分、C:39~30分、D:29~0分)統(tǒng)計,統(tǒng)計結(jié)果如圖所示.
根據(jù)上面提供的信息,回答下列問題:
(1)本次抽查了多少名學(xué)生的體育成績;
(2)補全圖9.1,求圖9.2中D分?jǐn)?shù)段所占的百分比;
(3)已知該校九年級共有900名學(xué)生,請估計該校九年級學(xué)生體育成績達到40分以上(含40分)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點M是BC邊上的任一點,連接AM并將線段AM繞M順時針旋轉(zhuǎn)90°得到線段MN,在CD邊上取點P使CP=BM,連接NP,BP.
(1)求證:四邊形BMNP是平行四邊形;
(2)線段MN與CD交于點Q,連接AQ,若△MCQ∽△AMQ,則BM與MC存在怎樣的數(shù)量關(guān)系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖的⊙O中,AB為直徑,OC⊥AB,弦CD與OB交于點F,過點D、A分別作⊙O的切線交于點G,并與AB延長線交于點E.
(1)求證:∠1=∠2.
(2)已知:OF:OB=1:3,⊙O的半徑為3,求AG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點E在BC邊上,且CE:BC=2:3,AC與DE相交于點F,若S△AFD=9,則S△EFC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,對角線相交于點O,E、F、G、H分別是AD、BD、BC、AC的中點,要使四邊形EFGH是菱形,則四邊形ABCD需滿足的條件是( )
A.AB=AD
B.AC=BD
C.AD=BC
D.AB=CD
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com