在⊙O中,給出下面三個(gè)論斷:①OC是⊙O的半徑;②直線AB⊥OC;③直線AB是⊙O的切線且AB經(jīng)過(guò)C點(diǎn).以其中兩個(gè)論斷為條件,一個(gè)論斷為結(jié)論,用“→”形式寫(xiě)出一個(gè)真命題:   
【答案】分析:分別根據(jù)切線的判定定理和切線的性質(zhì)定理解答即可.
解答:解:根據(jù)切線的判定定理可得一個(gè)真命題:②③→①;
由切線的性質(zhì)定理可得:①③→②.
點(diǎn)評(píng):本題考查了切線的判定定理和性質(zhì)定理,其中切線的判定定理是指經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

4、在⊙O中,給出下面三個(gè)論斷:①OC是⊙O的半徑;②直線AB⊥OC;③直線AB是⊙O的切線且AB經(jīng)過(guò)C點(diǎn).以其中兩個(gè)論斷為條件,一個(gè)論斷為結(jié)論,用“→”形式寫(xiě)出一個(gè)真命題:
①③→②或②③→①

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在梯形ABCD中,AB∥CD,E是AB邊上的點(diǎn),給出下面三個(gè)論斷:①AD=BC;②DE=CE;③AE=BE.請(qǐng)你以其中的兩個(gè)論斷為條件,填入“已知”欄中,以一個(gè)論斷作為結(jié)論,填入“求證”欄中,使之成為一個(gè)正確的命題,并證明之.
已知:如圖,在梯形ABCD中,AB∥CD,E是AB邊上的點(diǎn),
AD=BC,AE=BE
AD=BC,AE=BE

求證:
DE=CE
DE=CE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

在⊙O中,給出下面三個(gè)論斷:①OC是⊙O的半徑;②直線AB⊥OC;③直線AB是⊙O的切線且AB經(jīng)過(guò)C點(diǎn).以其中兩個(gè)論斷為條件,一個(gè)論斷為結(jié)論,用“→”形式寫(xiě)出一個(gè)真命題:________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在⊙O中,給出下面三個(gè)論斷:①OC是⊙O的半徑;②直線AB⊥OC;③直線AB是⊙O的切線且AB經(jīng)過(guò)C點(diǎn).以其中兩個(gè)論斷為條件,一個(gè)論斷為結(jié)論,用“→”形式寫(xiě)出一個(gè)真命題:______.

查看答案和解析>>

同步練習(xí)冊(cè)答案