如上圖,小章利用一張左、右兩邊已經(jīng)破損的長方形紙片ABCD做折紙游戲,他將紙片沿EF折疊后,D、C兩點分別落在D ′、C ′ 的位置,并利用量角器量得∠EFB=65°,則∠AED ′等于  ▲  °.
50
:∵AD∥BC,
∴∠DEF=∠EFB=65°,
由折疊可知,∠D′EF=∠DEF=65°,
∴∠AED′=180°-∠D′EF-∠DEF=50°
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在四邊形中,點是線段上的任意一點(不重合),分別是的中點.

(1)試判斷四邊形的形狀并說明理由;
(2)在(1)的條件下,若,且,證明平行四邊形是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在梯形中,,對角線平分,的平分線分別是的中點.
小題1:求證:
小題2:當滿足怎樣的數(shù)量關(guān)系時,?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

等腰梯形ABCD中,AB∥DC,AD=BC=8,AB=10,CD=6,則梯形ABCD的面積是   (    )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖, 有一塊邊長為4的正方形塑料模板ABCD, 將一塊足夠大的直角三角形的直角頂點落在點A, 兩條直角邊分別與CD交于點F, 與CB的延長線交于點E, 則四邊形AECF的面積是 _________。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在Rt△ABC中,∠BAC=90°,∠B=30°,線段AD是BC邊上的中線.
小題1:如圖(Ⅰ),將△ADC沿直線BC平移,使點D與點C重合,得到△FCE,連結(jié)AF.求證:四邊形ADEF是等腰梯形;

小題2:如圖(Ⅱ),在(1)的條件下,再將△FCE繞點C順時針旋轉(zhuǎn),設旋轉(zhuǎn)角為(0°<<90°)連結(jié)AF、DE.

AC⊥CF時,求旋轉(zhuǎn)角的度數(shù);②當=60°時,請判斷四邊形ADEF的形狀,并給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若平行四邊形的一邊長是12㎝,則這個平行四邊形的兩條對角線長可以是( 。
A.5㎝和7㎝B.20㎝和30㎝C.8㎝和16㎝D.6㎝和10㎝

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

數(shù)學課上,張老師出示了問題:如圖1,四邊形ABCD是正方形,點E是邊BC的中點,∠AEF = 90°,且EF交正方形外角∠DCG的平行線CF于點F , 求證:AE=EF .經(jīng)過思考,小明展示了一種正確的解題思路:取AB的中點M,連結(jié)ME,則AM = EC,
易證△AME≌△ECF,所以AE = EF .   在此基礎(chǔ)上,同學們作了進一步的研究:
小題1:小穎提出:如圖2,如果把“點E是邊BC的中點”改為“點E是邊BC上(除B,C外)的任意一點”,其它條件不變,那么結(jié)論“AE = EF ”仍然成立,你認為小穎的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由
小題2:小華提出:如圖3,點E是BC的延長線上(除C點外)的任意一點,其他條件不變,結(jié)論“AE = EF ”仍然成立. 你認為小華的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在正方形ABCD中,AB=1,AC是以點B為圓心,AB長為半徑的圓的一條弧,點E是邊AD上的任意一點(點E與A、D不重合),過E作AC所在圓的切線,交邊DC于點F,G為切點
小題1:當∠DEF=時,試說明點G為線段EF的中點;
小題2:設AE=,F(xiàn)C=,用含有的代數(shù)式來表示,并寫出的取值范圍
小題3:如果把△DEF沿直線EF對折后得△,如圖2,當 時,討論△與△是否相似,如果相似,請加以證明;如果不相似,只要寫出結(jié)論,不要求寫出理由.

查看答案和解析>>

同步練習冊答案